CRII: RI: Anytime Inference with Confidence Bounds for Graphical Models
CRII:RI:图形模型的随时推理与置信界限
基本信息
- 批准号:1565796
- 负责人:
- 金额:$ 15.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-04-01 至 2018-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Probabilistic graphical models are widely used throughout science and engineering to solve difficult problems, understand large data sets, or make predictions about complex phenomena. Making predictions or decisions out of graphical models involves challenging #P-hard computational problems, and efficient approximation methods are highly demanded. The most useful approximations should give not only accurate estimates, but also (1) come with tight and conservative error bounds and (2) can be improved continuously to trade time for increased accuracy in a memory efficient and predictable way (an "anytime" property). Such algorithms should allow us to solve easy problems with strong certificates of accuracy, and also identify harder problems together with clear guidance for further improvement. Unfortunately, most state-of-the-art methods, including deterministic variational methods and Monte Carlo-based methods, often do not fully satisfy these criteria. This project aims to develop a new generation of inference tools with tight non-asymptotic confidence bounds and anytime property. Based on several key insights that connect variational inference with non-asymptotic bounds of Monte Carlo, the PI derives a spectrum of powerful methods that naturally integrate and combine the advantages of these two approaches, providing a new foundation for more reliable inference. The project also develops novel non-asymptotic error bounds for advanced Monte Carlo methods such as annealed importance sampling (AIS), based on which the researchers construct highly efficient estimates and bounds built on the state-of-the-art AIS. The approaches are tested extensively on various application domains, and provide practical guidance and open source packages for practitioners. The new powerful anytime, error-aware inference tools will lead much more reliable use of graphical models across different application domains, greatly expanding our ability of reasoning over large datasets and complex phenomena.
概率图形模型在整个科学和工程中广泛使用,以解决困难问题,了解大数据集或对复杂现象做出预测。从图形模型中做出预测或决策涉及挑战#P-HARD计算问题,并且高度要求有效的近似方法。最有用的近似值不仅应给出准确的估计值,而且(1)具有紧密而保守的误差范围,(2)可以连续改善以交易时间以增加记忆效率和可预测的方式(“随时”属性)。这样的算法应该使我们能够使用强大的准确性证书解决简单问题,并确定更困难的问题,并明确指导进一步改进。不幸的是,大多数最先进的方法,包括确定性变分方法和基于蒙特卡洛的方法,通常无法完全满足这些标准。 该项目旨在开发新一代的推理工具,具有紧密的非肿瘤信心范围和任何时间属性。基于几种关键见解,这些见解将变异推理与蒙特卡洛的非质子界界联系起来,PI得出了一系列强大的方法,这些方法自然地整合并结合了这两种方法的优势,为更可靠的推断提供了新的基础。该项目还为先进的蒙特卡洛方法(例如退火重要性采样(AIS))开发了新型的非反应误差范围,研究人员构建了基于先进的AIS建立的高效估计和界限。这些方法在各个应用程序领域进行了广泛的测试,并为从业者提供了实用的指导和开源包。随时随地,新功能的推理工具将引导对不同应用程序域上图形模型的更可靠使用,从而大大扩展了我们对大型数据集和复杂现象的推理能力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Qiang Liu其他文献
High doping Nd:YAG transparent ceramics fabricated by solid-state reactive sintering
固相反应烧结高掺杂Nd:YAG透明陶瓷
- DOI:
10.1002/pssc.201300001 - 发表时间:
2013-06 - 期刊:
- 影响因子:0
- 作者:
Jingkun Guo;Qiang Liu;Jiang Li;Xuewei Ba;Wenbin Liu;Huamin Kou;Benxue Jiang;Yubai Pan;Xiaonong Cheng - 通讯作者:
Xiaonong Cheng
Green synthesis of novel in situ micro/submicron-Cu paste for semiconductor interconnection
用于半导体互连的新型原位微米/亚微米铜浆料的绿色合成
- DOI:
10.1088/1361-6528/ac4b79 - 发表时间:
2022-01 - 期刊:
- 影响因子:3.5
- 作者:
Yu Zhang;Qiang Liu;Yu Liu;Jin Tong;Zhongwei Huang;Song Wu;Peilin Liang;Guannan Yang;Chengqiang Cui - 通讯作者:
Chengqiang Cui
The association of gray matter volumes in the frontoparietal attention network with temperamental effortful control in young adults: A voxel-based morphometry study
额顶叶注意力网络中灰质体积与年轻人情绪努力控制的关联:基于体素的形态测量研究
- DOI:
10.1016/j.pscychresns.2015.04.009 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Wenhai Zhang;Hong Li;Jie Chen;Qiang Liu;Xia Liu;Dahua Wang;Jiliang Shen - 通讯作者:
Jiliang Shen
Enhanced monopole transition strength from the cluster decay of 13C
13C 团簇衰变增强单极跃迁强度
- DOI:
10.1007/s11433-018-9258-7 - 发表时间:
2018-08 - 期刊:
- 影响因子:0
- 作者:
Jun Feng;YanLin Ye;Biao Yang;ChengJian Lin;HuiMin Jia;DanYang Pang;ZhiHuan Li;JianLing Lou;QiTe Li;XiaoFei Yang;Jing Li;HongLiang Zang;Qiang Liu;Wei Jiang;ChenGuang Li;Yang Liu;ZhiQiang Chen;HongYi Wu;ChunGuang Wang;Wei Liu;Xiang Wang;JingJing Li;DiWen Lu - 通讯作者:
DiWen Lu
More portion of precipitation into soil water storage to maintain higher evapotranspiration induced by revegetation on China’s Loess Plateau
更多部分降水进入土壤储水,以维持中国黄土高原植被恢复带来的更高蒸散量
- DOI:
10.1016/j.jhydrol.2022.128707 - 发表时间:
2022-12 - 期刊:
- 影响因子:6.4
- 作者:
Jialiang Zhou;Qiang Liu;Liqiao Liang;Jun He;Denghua Yan;Xuan Wang;Tao Sun;Shuzhen Li - 通讯作者:
Shuzhen Li
Qiang Liu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Qiang Liu', 18)}}的其他基金
CC* Integration-Large: Husker-Net: Open Nebraska End-to-End Wireless Edge Networks
CC* 大型集成:Husker-Net:开放内布拉斯加州端到端无线边缘网络
- 批准号:
2321699 - 财政年份:2023
- 资助金额:
$ 15.77万 - 项目类别:
Standard Grant
CAREER: Stein Variational Gradient Descent: A New Foundation for Inference
职业生涯:斯坦因变分梯度下降:新的推理基础
- 批准号:
1846421 - 财政年份:2019
- 资助金额:
$ 15.77万 - 项目类别:
Continuing Grant
CRII: RI: Anytime Inference with Confidence Bounds for Graphical Models
CRII:RI:图形模型的随时推理与置信界限
- 批准号:
1830161 - 财政年份:2018
- 资助金额:
$ 15.77万 - 项目类别:
Standard Grant
Common Application Platform for Low Voltage Network Management
低压网络管理通用应用平台
- 批准号:
EP/N508421/1 - 财政年份:2015
- 资助金额:
$ 15.77万 - 项目类别:
Research Grant
相似国自然基金
跨膜蛋白LRP5胞外域调控膜受体TβRI促钛表面BMSCs归巢、分化的研究
- 批准号:82301120
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于“免疫-神经”网络探讨眼针活化CI/RI大鼠MC靶向H3R调节“免疫监视”的抗炎机制
- 批准号:82374375
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
Dectin-2通过促进FcεRI聚集和肥大细胞活化加剧哮喘发作的机制研究
- 批准号:82300022
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
TβRI的UFM化修饰调控TGF-β信号通路和乳腺癌转移的作用及机制研究
- 批准号:32200568
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
藏药甘肃蚤缀β-咔啉生物碱类TβRI抑制剂的发现及其抗肺纤维化作用机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
CRII: RI: Deep neural network pruning for fast and reliable visual detection in self-driving vehicles
CRII:RI:深度神经网络修剪,用于自动驾驶车辆中快速可靠的视觉检测
- 批准号:
2412285 - 财政年份:2024
- 资助金额:
$ 15.77万 - 项目类别:
Standard Grant
Research Infrastructure: Mid-scale RI-1 (MI:IP): X-rays for Life Sciences, Environmental Sciences, Agriculture, and Plant sciences (XLEAP)
研究基础设施:中型 RI-1 (MI:IP):用于生命科学、环境科学、农业和植物科学的 X 射线 (XLEAP)
- 批准号:
2330043 - 财政年份:2024
- 资助金额:
$ 15.77万 - 项目类别:
Cooperative Agreement
NSF Engines Development Award: Accelerating A Just Energy Transition Through Innovative Nature-Inclusive Offshore Wind Farms (CT,DE,MA,MD,NJ,RI,VA)
NSF 发动机开发奖:通过创新的自然包容性海上风电场加速公正的能源转型(康涅狄格州、特拉华州、马里兰州、马里兰州、新泽西州、罗德岛州、弗吉尼亚州)
- 批准号:
2315558 - 财政年份:2024
- 资助金额:
$ 15.77万 - 项目类别:
Cooperative Agreement
新しい口腔癌センチネルリンパ節マッピング法の確立-RI法との非劣性試験-
口腔癌前哨淋巴结定位新方法的建立-RI法非劣效性检验-
- 批准号:
24K20038 - 财政年份:2024
- 资助金额:
$ 15.77万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
医療用RIの大量製造に向けた大強度He二価ECRイオン源の研究開発
医用RI量产用高强度He二价ECR离子源研发
- 批准号:
24KJ1107 - 财政年份:2024
- 资助金额:
$ 15.77万 - 项目类别:
Grant-in-Aid for JSPS Fellows