AF: Medium: Dropping Convexity: New Algorithms, Statistical Guarantees and Scalable Software for Non-convex Matrix Estimation
AF:中:降低凸性:用于非凸矩阵估计的新算法、统计保证和可扩展软件
基本信息
- 批准号:1564000
- 负责人:
- 金额:$ 90.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
An image from your camera is a matrix of numbers, but most matrices of numbers would not look like an image -- the matrix of numbers in an image reflect structure from the scene. Many applications of data analysis across science, engineering, and business can be viewed as taking a matrix of observations and fitting low-rank or otherwise structured matrices to explain their relationships. Image and video analysis is not the only example; the problem arises in structural analysis of social networks, divining user preferences for new products and services, and many other analysis tasks. As the scale and dimensionality of these problems increases, the data analyst is faced with a gap between rigor and scale: theoretically sound algorithms often have requirements (e.g. repeated/random access to data) that are feasible only on medium-scale datasets, and even then may not provide answers in "interactive time" (i.e. smallish time scales required for a human interactively analyzing data). Thus practice has turned towards methods that lack rigorous guarantees, but that are scalable and have been observed to provide decent approximation. This project aims to narrow this gap by two technical observations: (a) Recognizing that fast matrix inference necessitates non-convex algorithms, it focuses on developing a rigorous analysis of the same, and (b) by explicitly incorporating big-data architectures (out of core, and distributed multicore) in the algorithm design and statistical analysis stage itself. it focuses on several specific tasks, including pass-efficient low-rank approximation, minimizing general convex functions over the non-convex set of low-rank matrices, robust matrix estimation, and non-linear and kernel matrix settings. The project trains graduate students in the mathematical and computational development important for data analysis. The promise of big data can only be realized by scaling infrastructure with data to continue to provide statistically meaningful insights; this project aims to realize this promise for a large suite of matrix estimation problems.
来自相机的图像是数字的矩阵,但是大多数数字矩阵看起来不像图像 - 图像中数字的矩阵反映了场景的结构。 跨科学,工程和业务的数据分析的许多应用都可以看作是对观测值进行矩阵,并适合低级或其他结构化的矩阵来解释其关系。图像和视频分析不是唯一的例子。问题出现在社交网络的结构分析,对新产品和服务的用户偏好以及许多其他分析任务中产生。随着这些问题的规模和维度的增加,数据分析师面临严格和规模之间的差距:从理论上讲,声音算法通常具有仅在中等规模数据集上可行的要求(例如,重复/随机访问数据),即使那样,甚至可能在“交互时间”中提供“互动时间”的答案(即,smillish time scales scales scales scales scales scales cretments totals互动分析都需要数据分析)。因此,实践转向缺乏严格保证的方法,但可以扩展并被观察到提供体面的近似值。该项目的目的是通过两个技术观察结果来缩小这一差距:(a)认识到快速矩阵推理需要非convex算法,它着重于对同一的严格分析进行严格的分析,以及(b)通过在Algorithm Designistics Analless和统计分析阶段中明确结合Big-Data架构(核心和分布式多核)。它着重于几个特定的任务,包括传递效率低级别近似,最大程度地降低了非凸点的一般凸函数,低级别矩阵,可靠的矩阵估计以及非线性和内核矩阵设置。该项目培训了数学和计算发展的研究生对于数据分析很重要。大数据的承诺只能通过使用数据扩展基础架构来继续提供统计意义的见解来实现。该项目旨在实现这一诺言,以实现大量矩阵估计问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sujay Sanghavi其他文献
Stratospheric chlorine activation in the Arctic winters 1995/96–2001/02 derived from GOME OClO measurements
1995/96–2001/02 北极冬季平流层氯活化来自 GOME OClO 测量
- DOI:
10.1016/j.asr.2003.08.069 - 发表时间:
2004 - 期刊:
- 影响因子:2.6
- 作者:
S. Kühl;W. Wilms;S. Beirle;C. Frankenberg;M. Grzegorski;J. Hollwedel;F. Khokhar;Sarit Kraus;U. Platt;Sujay Sanghavi;C. V. Friedeburg;T. Wagner - 通讯作者:
T. Wagner
Geometric Median (GM) Matching for Robust Data Pruning
用于稳健数据修剪的几何中值 (GM) 匹配
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Anish Acharya;I. Dhillon;Sujay Sanghavi - 通讯作者:
Sujay Sanghavi
Learning Graphical Models for Hypothesis Testing
学习假设检验的图形模型
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Sujay Sanghavi;V. Tan;A. Willsky - 通讯作者:
A. Willsky
In-Context Learning with Transformers: Softmax Attention Adapts to Function Lipschitzness
使用 Transformers 进行上下文学习:Softmax Attention 适应函数 Lipschitzness
- DOI:
10.48550/arxiv.2402.11639 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Liam Collins;Advait Parulekar;Aryan Mokhtari;Sujay Sanghavi;Sanjay Shakkottai - 通讯作者:
Sanjay Shakkottai
Understanding the Training Speedup from Sampling with Approximate Losses
了解具有近似损失的采样的训练加速
- DOI:
10.48550/arxiv.2402.07052 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Rudrajit Das;Xi Chen;Bertram Ieong;Parikshit Bansal;Sujay Sanghavi - 通讯作者:
Sujay Sanghavi
Sujay Sanghavi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sujay Sanghavi', 18)}}的其他基金
Collaborative Research: EnCORE: Institute for Emerging CORE Methods in Data Science
合作研究:EnCORE:数据科学新兴核心方法研究所
- 批准号:
2217069 - 财政年份:2022
- 资助金额:
$ 90.24万 - 项目类别:
Continuing Grant
HDR TRIPODS: UT Austin Institute on the Foundations of Data Science
HDR TRIPODS:UT Austin 数据科学基础研究所
- 批准号:
1934932 - 财政年份:2019
- 资助金额:
$ 90.24万 - 项目类别:
Continuing Grant
CIF: Medium: Collaborative Research: New Approaches to Robustness in High-Dimensions
CIF:中:协作研究:高维鲁棒性的新方法
- 批准号:
1302435 - 财政年份:2013
- 资助金额:
$ 90.24万 - 项目类别:
Continuing Grant
CAREER: Networks and Statistical Inference: New Connections and Algorithms
职业:网络和统计推断:新连接和算法
- 批准号:
0954059 - 财政年份:2010
- 资助金额:
$ 90.24万 - 项目类别:
Continuing Grant
NetSE: Small: Social Networks in the Real World: From Sensing to Structure Analysis
NetSE:小型:现实世界中的社交网络:从感知到结构分析
- 批准号:
1017525 - 财政年份:2010
- 资助金额:
$ 90.24万 - 项目类别:
Standard Grant
NeTS: Medium: Collaborative Research: Shaping, Learning and Optimizing Dynamic Networks
NeTS:媒介:协作研究:塑造、学习和优化动态网络
- 批准号:
0964391 - 财政年份:2010
- 资助金额:
$ 90.24万 - 项目类别:
Continuing Grant
相似国自然基金
复合低维拓扑材料中等离激元增强光学响应的研究
- 批准号:12374288
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
基于管理市场和干预分工视角的消失中等企业:特征事实、内在机制和优化路径
- 批准号:72374217
- 批准年份:2023
- 资助金额:41.00 万元
- 项目类别:面上项目
托卡马克偏滤器中等离子体的多尺度算法与数值模拟研究
- 批准号:12371432
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
中等质量黑洞附近的暗物质分布及其IMRI系统引力波回波探测
- 批准号:12365008
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
中等垂直风切变下非对称型热带气旋快速增强的物理机制研究
- 批准号:42305004
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
RII Track-4:@NASA: Bluer and Hotter: From Ultraviolet to X-ray Diagnostics of the Circumgalactic Medium
RII Track-4:@NASA:更蓝更热:从紫外到 X 射线对环绕银河系介质的诊断
- 批准号:
2327438 - 财政年份:2024
- 资助金额:
$ 90.24万 - 项目类别:
Standard Grant
Collaborative Research: Topological Defects and Dynamic Motion of Symmetry-breaking Tadpole Particles in Liquid Crystal Medium
合作研究:液晶介质中对称破缺蝌蚪粒子的拓扑缺陷与动态运动
- 批准号:
2344489 - 财政年份:2024
- 资助金额:
$ 90.24万 - 项目类别:
Standard Grant
Collaborative Research: AF: Medium: The Communication Cost of Distributed Computation
合作研究:AF:媒介:分布式计算的通信成本
- 批准号:
2402836 - 财政年份:2024
- 资助金额:
$ 90.24万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Medium: Foundations of Oblivious Reconfigurable Networks
合作研究:AF:媒介:遗忘可重构网络的基础
- 批准号:
2402851 - 财政年份:2024
- 资助金额:
$ 90.24万 - 项目类别:
Continuing Grant
Collaborative Research: CIF: Medium: Snapshot Computational Imaging with Metaoptics
合作研究:CIF:Medium:Metaoptics 快照计算成像
- 批准号:
2403122 - 财政年份:2024
- 资助金额:
$ 90.24万 - 项目类别:
Standard Grant