CAREER:Toward ultra-low energy switching in spintronic devices
职业:自旋电子器件中的超低能量开关
基本信息
- 批准号:1554011
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-02-01 至 2023-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Spintronics makes explicit use of spin, an inherent quantum-mechanical property of electrons, to achieve novel functionalities. A unique advantage of spintronic devices is their nonvolatility: the information they store in spin is retained and remembered even after power is removed from the devices. Nonvolatility is particularly important for the nascent generation of digital devices in which transistor dimensions will be reduced to only a few nanometers. At this nanoscale the power consumption of traditional complementary metal-oxide semiconductor (CMOS) transistors will be dominated by leakage current; whereas, for spintronic structures such energy waste can be completely eliminated. An important draw back for spintronics is the lowest recorded switching energy to flip electron spins between their up or down states to 1s and 0s in binary computer instructions, is still more than two orders of magnitude higher than a CMOS transistor, which severely limits the present applications of spintronic devices. This CAREER project is focused on exploring novel voltage effects to greatly reduce the switching energy of spin-based devices. By successfully demonstrating ultra-low energy switching, this project broadly impacts a wide range of spintronic devices as well as emergent technologies such as wearable computers and the Internet of Things, for which zero power consumption in the standby state is critical and highly desired. The multidisciplinary nature of the research impacts multiple levels of education, from high school to graduate students. The education activities build on a proven plan to encourage and inspire underrepresented minority students in local high schools to pursue STEM majors in college. Moreover, the PI will leverage this CAREER research to continue his outreach efforts to improve the general public's understanding of spintronics through activities such as 'Physics Open House' and 'Physics Phun Nite'.This CAREER award explores energy-efficient switching mechanisms in spintronic structures. Three different, but complementary approaches will be studied: (1) switching based on voltage-controlled interlayer exchange coupling; (2) switching based on voltage-induced effective field; and (3) switching based on voltage-assisted spin transfer torque. These three switching scenarios are studied under the context of voltage-controlled anisotropy and voltage-controlled magnetism. Voltage-controlled anisotropy is an electronic effect where the magnetic anisotropy field can be substantially modified, but the saturation magnetization remains largely the same. Voltage-controlled magnetism is an ionic effect where both the magnetic anisotropy field and the saturation magnetization can be controlled by voltage. The dependence of these effects on the Rashba spin-orbit coupling and Dzyaloshinskii-Moriya Interaction will investigated. Combined with the experiments that characterize the voltage-induced charge redistribution in ferromagnets, a complete understanding on different switching mechanisms will be achieved. Furthermore, these new approaches to dramatically decrease the switching energy will be directly implemented on high quality magnetic tunnel junctions with strong perpendicular magnetic anisotropy, which can not only perform as stand-alone spintronic memories or logic cells, but can serve also as the essential part of many other spintronic devices, such as lateral spin valves and spin-Hall memories. The results obtained in this project will transform our understanding of how magnetoelectric coupling is mediated by both electrons and ions in ultra-thin magnetic films. Success for this project paves a path to ultra-low switching energy spintronic devices that could be complementary, or even superior, to traditional CMOS devices.
自旋电子学明确利用自旋(电子固有的量子力学特性)来实现新颖的功能。自旋电子器件的一个独特优势是它们的非易失性:即使在器件断电后,它们在自旋中存储的信息也会被保留和记住。非易失性对于新一代数字设备尤其重要,其中晶体管尺寸将减小到只有几纳米。在这种纳米尺度上,传统互补金属氧化物半导体(CMOS)晶体管的功耗将主要由漏电流决定;而对于自旋电子结构来说,这种能量浪费可以完全消除。自旋电子学的一个重要缺点是二进制计算机指令中记录的将电子自旋在向上或向下状态之间翻转为 1 和 0 的最低开关能量,仍然比 CMOS 晶体管高两个数量级以上,这严重限制了目前的技术自旋电子器件的应用。该职业项目的重点是探索新颖的电压效应,以大大降低基于自旋的器件的开关能量。通过成功演示超低能耗开关,该项目广泛影响了各种自旋电子器件以及可穿戴计算机和物联网等新兴技术,其中待机状态下的零功耗至关重要且非常迫切。该研究的多学科性质影响着从高中到研究生的多个层次的教育。这些教育活动建立在一项行之有效的计划的基础上,旨在鼓励和激励当地高中代表性不足的少数族裔学生在大学攻读 STEM 专业。此外,PI 将利用这项职业研究继续其外展工作,通过“物理开放日”和“物理 Phun Nite”等活动提高公众对自旋电子学的理解。该职业奖探索自旋电子结构中的节能开关机制。将研究三种不同但互补的方法:(1)基于压控层间交换耦合的切换; (2)基于电压感应有效场的切换; (3)基于电压辅助自旋转移矩的切换。这三种开关场景是在压控各向异性和压控磁性的背景下研究的。电压控制各向异性是一种电子效应,其中磁各向异性场可以显着改变,但饱和磁化强度基本保持不变。压控磁是一种离子效应,磁各向异性场和饱和磁化强度都可以通过电压控制。我们将研究这些效应对 Rashba 自旋轨道耦合和 Dzyaloshinskii-Moriya 相互作用的依赖性。结合表征铁磁体中电压感应电荷重新分布的实验,将实现对不同开关机制的完整理解。此外,这些大幅降低开关能量的新方法将直接在具有强垂直磁各向异性的高质量磁隧道结上实现,它不仅可以作为独立的自旋电子存储器或逻辑单元,还可以作为核心部分许多其他自旋电子器件,例如横向自旋阀和自旋霍尔存储器。该项目获得的结果将改变我们对超薄磁性薄膜中电子和离子如何介导磁电耦合的理解。该项目的成功为超低开关能量自旋电子器件铺平了道路,该器件可以补充甚至优于传统 CMOS 器件。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Weigang Wang其他文献
Room-temperature ferromagnetism in Co doped La 2 O 3
Co掺杂La 2 O 3 的室温铁磁性
- DOI:
10.1063/1.2830072 - 发表时间:
2008-02-14 - 期刊:
- 影响因子:0
- 作者:
Q. Wen;Huaiwu Zhang;Yuanqiang Song;Qinghui Yang;Haojun Zhu;Weigang Wang;J. Xiao - 通讯作者:
J. Xiao
Topological Hall Effect in a Topological Insulator Interfaced with a Magnetic Insulator.
与磁绝缘体连接的拓扑绝缘体中的拓扑霍尔效应。
- DOI:
10.1021/acs.nanolett.0c03195 - 发表时间:
2020-12-16 - 期刊:
- 影响因子:10.8
- 作者:
Peng Li;Jinjun Ding;S. L. Zhang;J. Kally;T. Pillsbury;O. Heinonen;Gaurab Rimal;C. Bi;A. Demann;S. Field;Weigang Wang;Jinke Tang;J. Jiang;A. Hoffmann;N. Samarth;Mingzhong Wu - 通讯作者:
Mingzhong Wu
Uptake of isoprene, methacrylic acid and methyl methacrylate into aqueous solutions of sulfuric acid and hydrogen peroxide.
将异戊二烯、甲基丙烯酸和甲基丙烯酸甲酯吸收到硫酸和过氧化氢的水溶液中。
- DOI:
10.1016/s1001-0742(11)61034-6 - 发表时间:
2012-11-01 - 期刊:
- 影响因子:0
- 作者:
Ze Liu;Maofa Ge;Weigang Wang - 通讯作者:
Weigang Wang
Electronic structure and photoionization dissociation studies of chlorocarbonyl trifluoromethanesulfonate, CF3SO3C(O)Cl
三氟甲磺酸氯羰基 CF3SO3C(O)Cl 的电子结构和光离解研究
- DOI:
10.1016/j.molstruc.2012.03.073 - 发表时间:
2012-09-12 - 期刊:
- 影响因子:3.8
- 作者:
XiaoPeng Wang;Shengrui Tong;Maofa Ge;Weigang Wang;Dianxun Wang - 通讯作者:
Dianxun Wang
Bayesian stochastic configuration networks for robust data modeling
用于稳健数据建模的贝叶斯随机配置网络
- DOI:
10.1002/cpe.6495 - 发表时间:
2021-09-02 - 期刊:
- 影响因子:0
- 作者:
Rongzhi Wu;Binyuan Lv;Chaoming Dai;Weigang Wang - 通讯作者:
Weigang Wang
Weigang Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Weigang Wang', 18)}}的其他基金
Collaborative Research: Spintronics Enabled Stochastic Spiking Neural Networks with Temporal Information Encoding
合作研究:自旋电子学支持具有时间信息编码的随机尖峰神经网络
- 批准号:
2333882 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Voltage controlled antiferromagnetism in magnetic tunnel junctions
磁隧道结中的压控反铁磁性
- 批准号:
1905783 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
库车坳陷沿走向差异构造变形成因机制定量研究
- 批准号:42372264
- 批准年份:2023
- 资助金额:54 万元
- 项目类别:面上项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:
北祁连-河西走廊盆地地壳结构沿盆山走向变化及揭示的青藏高原东北缘地壳变形方式的差异
- 批准号:42274134
- 批准年份:2022
- 资助金额:56 万元
- 项目类别:面上项目
含走向非一致结构面岩体真三轴卸荷力学响应及破坏模式研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
“走向共同富裕”: 中国机会不平等的指标估算、决定因素与对策研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:
相似海外基金
Toward Energy-Efficient and Ultra-Low Latency Wireless Networks: 5G and Beyond
迈向节能和超低延迟无线网络:5G 及其他
- 批准号:
RGPIN-2017-04705 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Discovery Grants Program - Individual
Toward Energy-Efficient and Ultra-Low Latency Wireless Networks: 5G and Beyond
迈向节能和超低延迟无线网络:5G 及其他
- 批准号:
RGPIN-2017-04705 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Discovery Grants Program - Individual
CAREER: Toward Embedding Perpetual Intelligence into Ultra-Low-Power Sensing and Inference Systems
职业:致力于将永久智能嵌入超低功耗传感和推理系统
- 批准号:
2047461 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Toward Energy-Efficient and Ultra-Low Latency Wireless Networks: 5G and Beyond
迈向节能和超低延迟无线网络:5G 及其他
- 批准号:
RGPIN-2017-04705 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Discovery Grants Program - Individual
Toward Energy-Efficient and Ultra-Low Latency Wireless Networks: 5G and Beyond
迈向节能和超低延迟无线网络:5G 及其他
- 批准号:
RGPIN-2017-04705 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Discovery Grants Program - Individual