BIGDATA: Collaborative Research: IA: F: Fractured Subsurface Characterization using High Performance Computing and Guided by Big Data

BIGDATA:协作研究:IA:F:使用高性能计算和大数据指导的断裂地下表征

基本信息

  • 批准号:
    1546553
  • 负责人:
  • 金额:
    $ 82.33万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-01-01 至 2018-12-31
  • 项目状态:
    已结题

项目摘要

Natural fractures act as major heterogeneities in the subsurface that controls flow and transport of subsurface fluids and chemical species. Their importance cannot be underestimated, because their transmissivity may result in undesired migration during geologic sequestration of CO2, they strongly control heat recovery from geothermal reservoirs, and they may lead to induced seismicity due to fluid injection into the subsurface. Advanced computational methods are critical to design subsurface processes in fractured media for successful environmental and energy applications. This project will address the following key BIG data and computer science challenges: (1) Computation of seismic wave propagation in fractured media; (2) BIG DATA analytics for inferring fracture characteristics; (3) High Performance Computation of flow and transport in fractured media; and (4) Integration of data from disparate sources for risk assessment and decision-making. This will enable design of technologies for addressing key societal issues such as safe energy extraction from the surface, long-term sequestration of large volumes of greenhouse gases, and safe storage of nuclear waste. The project will provide interdisciplinary training for a team of graduate students and postdoctoral fellows. Outreach to high schools teachers and minorities through a planned workshop will inspire interest in environmental green-engineering, mathematics, and computational science. Numerous applications will benefit from this research, including Computer and Information Science and Engineering (CISE), Geosciences (GEO), and Mathematical and Physical Sciences (MPS).The proposed research will emphasize high performance computation (HPC) approaches for characterizing fractures using large subsurface seismic data sets, BIG data analytics for extraction of fracture related information from seismic inversion results and long-duration dynamic data, and advanced computational approaches for modeling flow, transport, and geomechanics in fractured subsurface systems. The specific objectives are to: Develop an efficient forward modeling algorithm for seismic wave propagation in fractured media using efficient computational schemes. Compute flow and transport in fractured media using an efficient computational scheme implemented on GPUs such as mimetic finite differences. Perform efficient multiphysics simulation of flow and geomechanics in fractured media. Integrate information from time-lapse seismic inversion and flow/transport simulation using novel statistical schemes. Joint inversion of seismic and fluid flow data and uncertainty quantification using efficient computational schemes. Develop and deploy a scalable hybrid-staging based substrate that can support targeted workflows using staging-based in-situ/in-transit approaches. Computational simulation is critical to design subsurface processes for successful environmental and energy applications. Project URL: http://csm.ices.utexas.edu/current-projects/
天然裂缝是地下的主要异质性,控制着地下流体和化学物质的流动和传输。它们的重要性不可低估,因为它们的透射率可能会导致二氧化碳地质封存过程中发生意外的迁移,它们强烈控制地热储层的热回收,并且可能由于流体注入地下而导致诱发地震。先进的计算方法对于设计裂缝介质中的地下过程以实现成功的环境和能源应用至关重要。该项目将解决以下关键的大数据和计算机科学挑战:(1)裂缝介质中地震波传播的计算; (2) 大数据分析,推断断裂特征; (3) 裂缝介质流动与输运的高性能计算; (4) 整合不同来源的数据以进行风险评估和决策。这将使技术设计能够解决关键的社会问题,例如从地表安全提取能源、长期封存大量温室气体以及安全储存核废料。该项目将为研究生和博士后团队提供跨学科培训。 通过计划举办的研讨会向高中教师和少数族裔进行宣传,将激发人们对环境绿色工程、数学和计算科学的兴趣。 许多应用将从这项研究中受益,包括计算机和信息科学与工程(CISE)、地球科学(GEO)以及数学和物理科学(MPS)。拟议的研究将强调使用大数据来表征裂缝的高性能计算(HPC)方法地下地震数据集、用于从地震反演结果和长期动态数据中提取裂缝相关信息的大数据分析,以及用于对裂缝性地下系统中的流动、传输和地质力学进行建模的高级计算方法。具体目标是: 使用高效的计算方案,开发一种有效的地震波在裂缝介质中传播的正演建模算法。使用在 GPU 上实现的高效计算方案(例如模拟有限差分)来计算裂隙介质中的流动和传输。对裂缝介质中的流动和地质力学进行高效的多物理场模拟。使用新颖的统计方案集成来自时移地震反演和流动/输运模拟的信息。使用有效的计算方案联合反演地震和流体流动数据以及不确定性量化。开发和部署基于可扩展混合分段的基板,该基板可以使用基于分段的原位/在途方法支持目标工作流程。计算模拟对于设计成功的环境和能源应用的地下过程至关重要。项目网址:http://csm.ices.utexas.edu/current-projects/

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mary Wheeler其他文献

Mary Wheeler的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mary Wheeler', 18)}}的其他基金

Collaborative Research: High-Fidelity Modeling of Poromechanics with Strong Discontinuities
合作研究:具有强不连续性的孔隙力学的高保真度建模
  • 批准号:
    1911320
  • 财政年份:
    2019
  • 资助金额:
    $ 82.33万
  • 项目类别:
    Standard Grant
Collaborative Research: "Error Estimation, Data Assimilation and Uncertainty Quantification for Multiphysics and Multiscale Processes in Geological Media"
合作研究:“地质介质中多物理场和多尺度过程的误差估计、数据同化和不确定性量化”
  • 批准号:
    1228320
  • 财政年份:
    2012
  • 资助金额:
    $ 82.33万
  • 项目类别:
    Standard Grant
CDI-Type II: Collaborative Research: Computational Models for Evaluating Long Term CO2 Storage in Saline Aquifers
CDI-Type II:合作研究:评估咸水层长期二氧化碳封存的计算模型
  • 批准号:
    0835745
  • 财政年份:
    2008
  • 资助金额:
    $ 82.33万
  • 项目类别:
    Continuing Grant
CMG "Collaborative Research":"Stochastic Mulstiscale Modeling of Subsurface Flow and Reactive Transport"
CMG“合作研究”:“地下流动和反应输运的随机多尺度建模”
  • 批准号:
    0618679
  • 财政年份:
    2006
  • 资助金额:
    $ 82.33万
  • 项目类别:
    Standard Grant
"Collaborative Research"ITR-(ASE+EVS)-dmv+sim):Data Driven Simulation of the Subsurface: Optimization and Uncertainty Estimation
“协作研究”ITR-(ASE EVS)-dmv sim):数据驱动的地下模拟:优化和不确定性估计
  • 批准号:
    0427005
  • 财政年份:
    2004
  • 资助金额:
    $ 82.33万
  • 项目类别:
    Standard Grant
SCREMS: A Parallel Computer Cluster For Multiphysics & Multiscale Modeling of Subsurface & Surface Flows
SCEMS:多物理场并行计算机集群
  • 批准号:
    0215389
  • 财政年份:
    2002
  • 资助金额:
    $ 82.33万
  • 项目类别:
    Standard Grant
Collaborative Research: ITR/AP&IM Data Intense Challenge: The Instrumented Oil Field of the Future
合作研究:ITR/AP
  • 批准号:
    0121523
  • 财政年份:
    2001
  • 资助金额:
    $ 82.33万
  • 项目类别:
    Continuing Grant
KDI: Multiscale Physics-Based Simulation of Fluid Flow for Energy and Environmental Applications
KDI:基于物理的多尺度流体流动模拟,用于能源和环境应用
  • 批准号:
    9873326
  • 财政年份:
    1998
  • 资助金额:
    $ 82.33万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Parallel Algorithms for Surface Water Flows and Transport
数学科学:地表水流动和输送的并行算法
  • 批准号:
    9696177
  • 财政年份:
    1995
  • 资助金额:
    $ 82.33万
  • 项目类别:
    Continuing Grant
British Petroleum (BP)/Rice University Postdoctoral Fellowship on Parallel Algorithms for Uncertainty Estimationin Permeable Media
英国石油公司 (BP)/莱斯大学可渗透介质不确定性估计并行算法博士后奖学金
  • 批准号:
    9696008
  • 财政年份:
    1995
  • 资助金额:
    $ 82.33万
  • 项目类别:
    Standard Grant

相似国自然基金

基于交易双方异质性的工程项目组织间协作动态耦合研究
  • 批准号:
    72301024
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
医保基金战略性购买促进远程医疗协作网价值共创的制度创新研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    45 万元
  • 项目类别:
    面上项目
面向协作感知车联网的信息分发时效性保证关键技术研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向5G超高清移动视频传输的协作NOMA系统可靠性研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于自主性边界的人机协作-对抗混合智能控制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

BIGDATA: IA: Collaborative Research: Asynchronous Distributed Machine Learning Framework for Multi-Site Collaborative Brain Big Data Mining
BIGDATA:IA:协作研究:用于多站点协作大脑大数据挖掘的异步分布式机器学习框架
  • 批准号:
    2348159
  • 财政年份:
    2023
  • 资助金额:
    $ 82.33万
  • 项目类别:
    Standard Grant
BIGDATA: IA: Collaborative Research: Intelligent Solutions for Navigating Big Data from the Arctic and Antarctic
BIGDATA:IA:协作研究:导航北极和南极大数据的智能解决方案
  • 批准号:
    2308649
  • 财政年份:
    2022
  • 资助金额:
    $ 82.33万
  • 项目类别:
    Standard Grant
BIGDATA: Collaborative Research: F: Holistic Optimization of Data-Driven Applications
BIGDATA:协作研究:F:数据驱动应用程序的整体优化
  • 批准号:
    2027516
  • 财政年份:
    2020
  • 资助金额:
    $ 82.33万
  • 项目类别:
    Standard Grant
BigData:IA:Collaborative Research: TIMES: A tensor factorization platform for spatio-temporal data
BigData:IA:协作研究:TIMES:时空数据张量分解平台
  • 批准号:
    2034479
  • 财政年份:
    2020
  • 资助金额:
    $ 82.33万
  • 项目类别:
    Standard Grant
BIGDATA: F: Collaborative Research: Foundations of Responsible Data Management
大数据:F:协作研究:负责任的数据管理的基础
  • 批准号:
    1926250
  • 财政年份:
    2019
  • 资助金额:
    $ 82.33万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了