CAREER: Physics of Chromatin: Micromechanics of Active Chromatin Dynamics in Interphase

职业:染色质物理学:间期活性染色质动力学的微观力学

基本信息

  • 批准号:
    1554880
  • 负责人:
  • 金额:
    $ 80万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-15 至 2022-08-31
  • 项目状态:
    已结题

项目摘要

The DNA molecule in our cells is wrapped in a structure known as chromatin. Understanding how chromatin changes in time presents a fundamental question and is currently a frontier in both polymer physics as well as cell biology. To a physicist, chromatin is an exquisite example of a confined polymer that is subject to the basic laws of physics. To a biologist, chromatin controls gene expression, and physically packages DNA in a way that facilitates its replication and segregation. This project will lead to a mechanistic picture of active chromatin dynamics in live cells by integrating quantitative experimental approaches and theory from different areas of physics. As a part of this research program, the PI will develop a science outreach component targeting high school girls from underrepresented groups. In addition, this research program will provide training opportunities for undergraduate and graduate students, who will be trained in advanced optical microscopy techniques, small angle X-ray scattering, image processing, data analysis and polymer physics and statistical mechanics approaches pertinent to active systems far from equilibrium.The sequence of the human genome has been known for two decades, but its dynamic organization in three dimensions remains elusive. Methods like fluorescence in situ hybridization (FISH) or chromosome conformation capture (HiC) provided insights into how the chromatin is organized inside the cell nucleus. Methods like chromatin immunoprecipitation combined with sequencing (ChIP-Seq) helped us to map specific molecular players to the specific genomic loci within the context of specifics functions, usually transcriptional regulation. While FISH and HiC methods give us a 3D picture of the genome organization, it is a static picture, i.e. a snapshot of the human genome in a given time; they do not inform on the dynamic reorganization of the genome inside the nucleus. Similarly, Chip-Seq provides us with a snapshot of detailed 1D localization information of proteins of interest. The missing link in our current understanding is the connection between the 1D genomic information and the 3D topology of the cell nucleus in real time. The overall goal of this research program is to generate this missing link, i.e. to develop a real-time imaging of spatiotemporal dynamics of the human genome and understand the underlying physical laws. This research focuses on elucidating physics underlying nonequilibrium soft matter. Specifically, it presents development of an experimental and intellectual framework for understanding the dynamic behavior of chromatin in live cells. Chromatin presents an active polymer living in a confinement of the cell nucleus that is very different from the soft matter traditionally studied. It undergoes dynamic rearrangements, dissipates energy and exhibits self-organization far from thermodynamic equilibrium. Understanding of the mechanism/s beyond the active dynamics and elucidating the physical laws that such dynamics follows, will teach us new physics and its role in nuclear physiology.This project is being jointly supported by the Physics of Living Systems program in the Division of Physics and the Cellular Cluster in the Division of Molecular and Cellular Biosciences.
我们的细胞中的DNA分子被包裹在称为染色质的结构中。了解染色质在时间上的变化如何提出一个基本问题,目前是聚合物物理和细胞生物学的前沿。对于物理学家来说,染色质是受到基本物理定律的约束聚合物的精致例子。对于生物学家,染色质控制基因表达,并以促进其复制和隔离的方式对DNA进行物理包装。该项目将通过整合来自不同物理领域的定量实验方法和理论,从而导致活细胞中活性染色质动力学的机械图。作为该研究计划的一部分,PI将开发科学外展成分,以来自代表性不足的群体的高中女生。此外,该研究计划将为本科生和研究生提供培训机会,他们将接受高级光学显微镜技术,小角度X射线散射,图像处理,数据分析和聚合物物理学以及与活性系统相关的远离平衡的活性系统的方法。诸如荧光原位杂交(FISH)或染色体构象捕获(HIC)之类的方法为您提供了有关染色质在细胞核内如何组织的见解。诸如染色质免疫沉淀与测序(CHIP-SEQ)相结合的方法有助于我们将特定的分子参与者映射到特定的基因组基因局基因局基因局基因局基因局,通常是转录调节。尽管鱼类和HIC方法为我们提供了基因组组织的3D图片,但它是静态图片,即在给定时间内的人类基因组的快照。他们没有告知原子核内基因组的动态重组。同样,Chip-Seq为我们提供了有关感兴趣蛋白质的详细一维本地化信息的快照。我们当前理解中缺少的联系是实时的一维基因组信息与细胞核的3D拓扑之间的联系。该研究计划的总体目标是生成这种缺失的链接,即开发人类基因组时空动态的实时成像并了解潜在的物理定律。这项研究的重点是阐明非平衡软物质的物理学。具体而言,它提出了一个实验和智力框架的开发,以理解活细胞中染色质的动态行为。染色质表现出一种活性聚合物,生活在细胞核的限制中,与传统研究的软物质大不相同。它进行动态重排,消散能量并表现出远离热力学平衡的自组织。了解超出主动动力学的机制,并阐明这种动态所遵循的物理定律,将教给我们新的物理学及其在核生理学中的作用。该项目由生命系统计划在物理学和细胞群中共同支持分子和细胞生物科学的分工。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Symmetry-based classification of forces driving chromatin dynamics
基于对称性的染色质动力学驱动力分类
  • DOI:
    10.1039/d2sm00840h
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Eshghi, Iraj;Zidovska, Alexandra;Grosberg, Alexander Y.
  • 通讯作者:
    Grosberg, Alexander Y.
Structural and Dynamical Signatures of Local DNA Damage in Live Cells
  • DOI:
    10.1016/j.bpj.2019.10.042
  • 发表时间:
    2020-05-05
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Eaton, Jonah A.;Zidovska, Alexandra
  • 通讯作者:
    Zidovska, Alexandra
Euchromatin Activity Enhances Segregation and Compaction of Heterochromatin in the Cell Nucleus
常染色质活性增强细胞核中异染色质的分离和压缩
  • DOI:
    10.1103/physrevx.12.041033
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    12.5
  • 作者:
    Mahajan, Achal;Yan, Wen;Zidovska, Alexandra;Saintillan, David;Shelley, Michael J.
  • 通讯作者:
    Shelley, Michael J.
Mechanical stress affects dynamics and rheology of the human genome
机械应力影响人类基因组的动力学和流变学
  • DOI:
    10.1039/d1sm00983d
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Caragine, Christina M.;Kanellakopoulos, Nikitas;Zidovska, Alexandra
  • 通讯作者:
    Zidovska, Alexandra
Model chromatin flows: numerical analysis of linear and nonlinear hydrodynamics inside a sphere
  • DOI:
    10.1140/epje/s10189-023-00327-1
  • 发表时间:
    2023-08-01
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Eshghi,Iraj;Zidovska,Alexandra;Grosberg,Alexander Y. Y.
  • 通讯作者:
    Grosberg,Alexander Y. Y.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexandra Zidovska其他文献

On the mechanical stabilization of filopodia.
关于丝状伪足的机械稳定。
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Alexandra Zidovska;E. Sackmann
  • 通讯作者:
    E. Sackmann
Dynamic self-organization of the human genome during the cell cycle
  • DOI:
    10.1016/j.bpj.2022.11.331
  • 发表时间:
    2023-02-10
  • 期刊:
  • 影响因子:
  • 作者:
    Suho Lee;Alexandra Zidovska
  • 通讯作者:
    Alexandra Zidovska
Centromere and telomere dynamics reveal heterogeneity of the human cell nucleus
  • DOI:
    10.1016/j.bpj.2023.11.2000
  • 发表时间:
    2024-02-08
  • 期刊:
  • 影响因子:
  • 作者:
    Alexis Clavijo;Steven Ionov;Alexandra Zidovska
  • 通讯作者:
    Alexandra Zidovska
The “Self-Stirred” Genome: Dynamics, Flows and Rheology
  • DOI:
    10.1016/j.bpj.2020.11.879
  • 发表时间:
    2021-02-12
  • 期刊:
  • 影响因子:
  • 作者:
    Alexandra Zidovska
  • 通讯作者:
    Alexandra Zidovska
Tethered tracer in a mixture of hot and cold Brownian particles: can activity pacify fluctuations?
冷热布朗粒子混合物中的系留示踪剂:活动能否平息波动?
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Michael Wang;Ketsia Zinga;Alexandra Zidovska;A. Grosberg
  • 通讯作者:
    A. Grosberg

Alexandra Zidovska的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexandra Zidovska', 18)}}的其他基金

Investigating Phase Separations as a Mechanism of Genome Compartmentalization Through In-vivo Experiments
通过体内实验研究相分离作为基因组区室化的机制
  • 批准号:
    2210541
  • 财政年份:
    2022
  • 资助金额:
    $ 80万
  • 项目类别:
    Continuing Grant
Collaborative Research: DMS/NIGMS2: Discovering the Principles of Active Self-Organization in the Differentiating Genome Using Multi-Scale Modeling and In-Vivo Experiments
合作研究:DMS/NIGMS2:利用多尺度建模和体内实验发现分化基因组中主动自组织的原理
  • 批准号:
    2153432
  • 财政年份:
    2022
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
Collaborative Research: Interphase Chromatin as a Complex Active Fluid: Experiments and Microscopic to Mesoscopic Modeling
合作研究:间期染色质作为复杂的活性流体:实验和微观到介观建模
  • 批准号:
    1762506
  • 财政年份:
    2018
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant

相似国自然基金

新型血管微创介入智能碎溶栓系统设计与多物理效应下碎溶栓机理研究
  • 批准号:
    82302400
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
联合连续弛豫时间分布与物理阻抗模型的锂离子电池极化特性演变分析方法
  • 批准号:
    22309205
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于热电力协同调控的食管穿越式适形热物理治疗理论与方法研究
  • 批准号:
    52306105
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于物理启发领域泛化的跨装置等离子体破裂预测方法研究
  • 批准号:
    12375219
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
氧化/还原助剂修饰CdS用于光催化分解H2S制氢的超快光物理机理研究
  • 批准号:
    22311530118
  • 批准年份:
    2023
  • 资助金额:
    37 万元
  • 项目类别:
    国际(地区)合作与交流项目

相似海外基金

Context matters: Network modeling of COPD regulatory variants across tissues and exposures
背景很重要:跨组织和暴露的慢性阻塞性肺病监管变异的网络建模
  • 批准号:
    9983153
  • 财政年份:
    2018
  • 资助金额:
    $ 80万
  • 项目类别:
Context matters: Network modeling of COPD regulatory variants across tissues and exposures
背景很重要:跨组织和暴露的慢性阻塞性肺病监管变异的网络建模
  • 批准号:
    9769862
  • 财政年份:
    2018
  • 资助金额:
    $ 80万
  • 项目类别:
Context matters: Network modeling of COPD regulatory variants across tissues and exposures
背景很重要:跨组织和暴露的慢性阻塞性肺病监管变异的网络建模
  • 批准号:
    10241305
  • 财政年份:
    2018
  • 资助金额:
    $ 80万
  • 项目类别:
Context matters: Network modeling of COPD regulatory variants across tissues and exposures
背景很重要:跨组织和暴露的慢性阻塞性肺病监管变异的网络建模
  • 批准号:
    10458732
  • 财政年份:
    2018
  • 资助金额:
    $ 80万
  • 项目类别:
Cell Fate Choices in the Skeleton
骨骼中细胞命运的选择
  • 批准号:
    9411214
  • 财政年份:
    2017
  • 资助金额:
    $ 80万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了