INSPIRE: Optimization Algorithms for Regional Thermoelectric Power Generation with Nonlinear Interference
INSPIRE:非线性干扰下区域热电发电的优化算法
基本信息
- 批准号:1547205
- 负责人:
- 金额:$ 31.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This INSPIRE project is jointly funded by the Algorithmic Foundations program in the Computing and Communications Foundations Division in the Directorate for Computer and Information Science and Engineering, the Environmental Sustainability program in the Chemical, Bioengineering, Environmental, and Transport Systems Division in the Directorate for Engineering, and the Office of Integrative Activities (OIA) INSPIRE program.A thermoelectric power plant's operations can affect its surrounding environment, for example by raising water temperatures, which can be harmful to aquatic life, and so must comply with government regulation such as the Clean Water Act (CWA). It has recently been observed that the effects of power plants' operations can be much longer-reaching and subtler than this, however: the use of this warmer water by a second power plant located downstream can degrade that plant's efficiency, causing it in turn to heat the river water more than it otherwise would have, or even forcing it to shut down in order to comply with the CWA. Such complex dynamics characterizing the joint effects of a region's power plants suggest possible gains from managing plants jointly rather than individually. This analytical perspective prompts consideration of a huge variety of potential benefits to seek and costs to avoid in optimizing regional plant operations, and the interference phenomenon prompts (re)consideration of a number of classical algorithmic problems in the field of combinatorial optimization. This research offers many potential societal benefits in terms of environmental protection, economic savings, energy security, protection from blackouts, public health, and so on. Insights provided by the algorithmic solutions this project develops will be conveyed to decision makers and, if successful, will ultimately lead to improvements in management practices in existing plants and in long-range strategic planning. The project will provide research training for graduate students and will expose undergraduates at Lehman College and CCNY (both Minority-Serving Institutions) to interdisciplinary scientific research.This project will inaugurate the study of a novel class of combinatorial optimization problems. More specifically, it will investigate new variations on classical problems such as knapsack and job scheduling, modified to incorporate a distinctive feature of the motivating application setting, i.e. the *nonlinear interference* that can occur between active power plants. The PI and his team will design efficient (near-)optimal algorithms for these problems in the sense of guaranteed approximation, and, leveraging existing analytical models, they will perform algorithmic engineering studies assessing their algorithms' real-world viability. Finally, using tools from algorithmic game theory, they will quantify and provide a rigorous foundation for the perceived benefits of solving the motivating plant management problems jointly rather than plant-by-plant.
该启发项目由计算机和通信基础算法基础计划共同资助。计算机和信息科学与工程局,化学,生物工程,环境和运输系统部门的环境可持续性计划,工程局的环境可持续性计划,以及综合活动(OIA)的范围范围的范围范围范围的范围,可以影响境地。可能对水生生物有害,因此必须遵守政府法规,例如《清洁水法》(CWA)。最近已经观察到,电厂运营的影响可能比这更长和更微妙,但是:在下游的第二个发电厂使用这种温暖的水可以降低该植物效率的降低,从而使其又导致其加热河水比否则会更大,甚至迫使它迫使它遵守CWA。这种复杂的动力学表征了一个地区发电厂的关节作用,这表明共同管理植物而不是单独管理植物可能的收益。这种分析观点促使人们考虑了各种潜在的收益,以寻求和成本以避免优化区域植物运营,以及干扰现象提示(RE)考虑组合优化领域的许多经典算法问题。这项研究在环境保护,经济储蓄,能源安全,免受停电,公共卫生等方面提供了许多潜在的社会利益。该项目开发的算法解决方案提供的见解将被传达给决策者,如果成功的话,最终将导致现有工厂和远程战略规划中的管理实践的改善。该项目将为研究生提供研究培训,并将在雷曼学院(Lehman College)和CCNY(两个少数职业服务机构)中揭露本科生,以实现跨学科的科学研究。该项目将启动研究一系列新型组合优化问题的研究。更具体地说,它将调查有关经典问题(例如背包和工作计划)的新变化,并修改为纳入激励应用程序设置的独特特征,即可能发生的 *非线性干扰 *可能发生在主动的动力工厂之间。 PI和他的团队将在保证近似的意义上为这些问题设计有效的(近)最佳算法,并且利用现有的分析模型,他们将执行评估其算法的现实世界可行性的算法工程研究。最后,使用算法游戏理论中的工具,他们将量化并为共同解决动机的植物管理问题而不是逐植物的益处提供严格的基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew Johnson其他文献
Optimization of Coaxial Magnetic Gear Design and Magnet Material Grade at Different Temperatures and Gear Ratios
不同温度和齿轮比下同轴磁力齿轮设计和磁体材料牌号的优化
- DOI:
10.1109/tec.2021.3054806 - 发表时间:
2021 - 期刊:
- 影响因子:4.9
- 作者:
M. Gardner;Bryton Praslicka;Matthew Johnson;H. Toliyat - 通讯作者:
H. Toliyat
Streptococcus pyogenes peritonitis: a rare, lethal imitator of appendicitis
化脓性链球菌腹膜炎:一种罕见的、致命的阑尾炎模仿者
- DOI:
10.1136/bcr-2019-230490 - 发表时间:
2019 - 期刊:
- 影响因子:0.9
- 作者:
Matthew Johnson;Ashley Bartscherer;E. Tobin;Marcel Tafen - 通讯作者:
Marcel Tafen
Improving Hospital Evacuation Planning using Simulation
使用模拟改进医院疏散计划
- DOI:
10.5555/1218112.1218209 - 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
K. Taaffe;Matthew Johnson;D. Steinmann - 通讯作者:
D. Steinmann
Steiner Trees for Hereditary Graph Classes
遗传图类的斯坦纳树
- DOI:
10.1007/978-3-030-61792-9_48 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
H. Bodlaender;Nick Brettell;Matthew Johnson;Giacomo Paesani;D. Paulusma;E. J. V. Leeuwen - 通讯作者:
E. J. V. Leeuwen
Generalized Descriptor Compression for Storage and Matching
- DOI:
10.5244/c.24.23 - 发表时间:
2010-09 - 期刊:
- 影响因子:0
- 作者:
Matthew Johnson - 通讯作者:
Matthew Johnson
Matthew Johnson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew Johnson', 18)}}的其他基金
SBIR Phase I: Scalable Magnetically-Geared Modular Space Manipulator for In-space Manufacturing and Active Debris Remediation Missions
SBIR 第一阶段:用于太空制造和主动碎片修复任务的可扩展磁力齿轮模块化空间操纵器
- 批准号:
2335583 - 财政年份:2024
- 资助金额:
$ 31.6万 - 项目类别:
Standard Grant
Collaborative Research: Evolution of acquired phototrophy by organelle sequestration in Mesodinium ciliates
合作研究:中纤毛虫通过细胞器隔离获得的光养进化
- 批准号:
2344640 - 财政年份:2024
- 资助金额:
$ 31.6万 - 项目类别:
Standard Grant
Collaborative Research: Quantifying the impact of oxylipin chemical signaling on microbial community dynamics and biogeochemical cycling
合作研究:量化氧脂素化学信号对微生物群落动态和生物地球化学循环的影响
- 批准号:
2231922 - 财政年份:2023
- 资助金额:
$ 31.6万 - 项目类别:
Continuing Grant
Elucidating the transient nature of electron transfer complexes at the single-molecule level
阐明单分子水平上电子转移复合物的瞬态性质
- 批准号:
BB/V006630/1 - 财政年份:2021
- 资助金额:
$ 31.6万 - 项目类别:
Research Grant
Research: Practices of Engineers in Rural Schools Involving Students and Teachers (PERSIST) in Engineering
研究:乡村学校工程师参与学生和教师的实践(PERSIST)
- 批准号:
1930777 - 财政年份:2019
- 资助金额:
$ 31.6万 - 项目类别:
Standard Grant
Collaborative Research: Diversity of Physcomitrium pyriforme in North America and Europe: significance of autopolyploidy within a phylogenomic and experimental framework
合作研究:北美和欧洲梨形小须藻的多样性:系统发育和实验框架内同源多倍体的重要性
- 批准号:
1753800 - 财政年份:2018
- 资助金额:
$ 31.6万 - 项目类别:
Standard Grant
Quantification of the forces that mediate electron transfers between proteins
介导蛋白质之间电子转移的力的量化
- 批准号:
BB/P002005/1 - 财政年份:2017
- 资助金额:
$ 31.6万 - 项目类别:
Research Grant
Collaborative: RUI: IRES: Birds, Beans, and Bugs; Modeling a Warming Climate's Effect on the Natural Enemies Hypothesis
协作:RUI:IRES:鸟类、豆子和虫子;
- 批准号:
1657973 - 财政年份:2017
- 资助金额:
$ 31.6万 - 项目类别:
Standard Grant
Doctoral Dissertation Improvement Award: The Role of Heritage in Community Organization
博士论文改进奖:遗产在社区组织中的作用
- 批准号:
1630141 - 财政年份:2016
- 资助金额:
$ 31.6万 - 项目类别:
Standard Grant
REU Site: Natural Resource Science on Native American Lands
REU 网站:美洲原住民土地上的自然资源科学
- 批准号:
1559943 - 财政年份:2016
- 资助金额:
$ 31.6万 - 项目类别:
Standard Grant
相似国自然基金
基于元启发式多目标粒子群优化的集成智能呼吸信号预测算法研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向多任务优化的超启发式演化算法研究
- 批准号:62106199
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
基于元启发式多目标粒子群优化的集成智能呼吸信号预测算法研究
- 批准号:62103366
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
面向多任务优化的超启发式演化算法研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
生成学习驱动的昂贵大规模多目标优化
- 批准号:61903178
- 批准年份:2019
- 资助金额:16.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 31.6万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 31.6万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Medium: Algorithms Meet Machine Learning: Mitigating Uncertainty in Optimization
协作研究:AF:媒介:算法遇见机器学习:减轻优化中的不确定性
- 批准号:
2422926 - 财政年份:2024
- 资助金额:
$ 31.6万 - 项目类别:
Continuing Grant
Adaptive optimization: parameter-free self-tuning algorithms beyond smoothness and convexity
自适应优化:超越平滑性和凸性的无参数自调整算法
- 批准号:
24K20737 - 财政年份:2024
- 资助金额:
$ 31.6万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Scalable Algorithms for Deterministic Global Optimization With Parallel Architectures
使用并行架构实现确定性全局优化的可扩展算法
- 批准号:
2330054 - 财政年份:2024
- 资助金额:
$ 31.6万 - 项目类别:
Standard Grant