XPS: FULL: DSD: Collaborative Research: FPGA Cloud Platform for Deep Learning, Applications in Computer Vision
XPS:完整:DSD:协作研究:深度学习 FPGA 云平台、计算机视觉应用
基本信息
- 批准号:1533771
- 负责人:
- 金额:$ 30.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We stand on the verge of dramatic advances in deep learning applications, which will soon enable practicality and widespread adoption of computer vision based recognition in scientific inquiry, commercial applications, and everyday life. Grand challenge problems are within our reach; we will soon be able to build automated systems that recognize nearly everything we see, systems that can recognize the tens of thousands of basic-level categories that psychologists posit humans can recognize, systems that continuously learn from photos, video, and web content in order to create more complete and accurate visual models of the world. However, while it is clear that the computational capabilities for deep learning are within reach, it is equally clear that the required computational power cannot come from general-purpose processors. To succeed, we will need to build specialized domain-specific computing systems based on hardware accelerators that are capable of exploiting the extreme fine-grained parallelism inherent in deep-learning workloads. This project leverages parallelization and reconfigurable hardware to create an automated system that distributes computer vision algorithms onto a large number of field-programmable gate arrays (FPGA Cloud). This project builds on recent advances in domain-specific hardware generation tools in order to bring the potential parallelism and performance per watt advantages of FPGAs to large-scale computer vision problems. By developing a platform to run deep learning algorithms on large clouds of FPGAs, this proposal explicitly addresses scaling algorithms beyond what a single chip can process. This involves addressing a wide range of challenging problems in algorithm analysis, building domain-specific hardware generators, communication for scaling algorithms across multiple FPGAs, and extensive validation of generating hardware for state-of-the-art deep learning approaches applied to computer vision problems. This project advances tools for designing domain-specific FPGA implementations of algorithms, taking a step toward making more efficient computing with greater parallelism more widely available. In particular, for computer vision, there will be significant benefits from a product of multiple improvements: higher parallelism, lower gate requirement by moving to fixed point when possible, and better performance per watt leading to higher computation density in servers. Together, these have the potential to significantly increase the extent to which computer vision can be a part of our daily lives, making computers better able to understand the context of our world.
我们正处于深度学习应用取得巨大进步的边缘,这很快将在科学探究、商业应用和日常生活中实现基于计算机视觉的识别的实用性和广泛采用。 巨大的挑战问题触手可及;我们很快将能够构建能够识别几乎所有我们看到的一切的自动化系统,能够识别心理学家认为人类可以识别的数以万计的基本类别的系统,能够连续地从照片、视频和网络内容中学习的系统创建更完整、更准确的世界视觉模型。 然而,虽然深度学习的计算能力显然是可以实现的,但同样清楚的是,所需的计算能力不能来自通用处理器。 为了取得成功,我们需要构建基于硬件加速器的专门领域特定计算系统,这些系统能够利用深度学习工作负载中固有的极其细粒度的并行性。 该项目利用并行化和可重构硬件创建一个自动化系统,将计算机视觉算法分发到大量现场可编程门阵列(FPGA 云)上。该项目建立在特定领域硬件生成工具的最新进展的基础上,以便将 FPGA 的潜在并行性和每瓦性能优势应用于大规模计算机视觉问题。 通过开发一个在大型 FPGA 云上运行深度学习算法的平台,该提案明确解决了超出单芯片处理能力的扩展算法问题。 这涉及解决算法分析中的各种挑战性问题、构建特定领域的硬件生成器、跨多个 FPGA 扩展算法的通信,以及对应用于计算机视觉问题的最先进深度学习方法的生成硬件进行广泛验证。 该项目改进了用于设计特定领域的 FPGA 算法实现的工具,朝着更广泛地提供更高效的计算和更大的并行性迈出了一步。 特别是,对于计算机视觉而言,多重改进的产品将带来显着的好处:更高的并行性、通过在可能的情况下移动到定点来降低门要求,以及更好的每瓦性能导致服务器中更高的计算密度。 总之,这些有可能显着提高计算机视觉融入我们日常生活的程度,使计算机能够更好地理解我们世界的背景。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexander Berg其他文献
Cuticular hydrocarbons on old museum specimens of the spiny mason wasp, Odynerus spinipes (Hymenoptera: Vespidae: Eumeninae), shed light on the distribution and on regional frequencies of distinct chemotypes
旧博物馆多刺石蜂 Odynerus spinipes(膜翅目:胡蜂科:胡蜂亚科)标本上的表皮碳氢化合物揭示了不同化学型的分布和区域频率
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:1.8
- 作者:
V. Moris;Katharina Christmann;Aline Wirtgen;S. Belokobylskij;Alexander Berg;W. Liebig;Villu Soon;H. Baur;T. Schmitt;O. Niehuis - 通讯作者:
O. Niehuis
An illustrated key to the cuckoo wasps (Hymenoptera, Chrysididae) of the Nordic and Baltic countries, with description of a new species
北欧和波罗的海国家杜鹃黄蜂(膜翅目、杜鹃科)的插图图解,并描述了一个新物种
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:1.3
- 作者:
Juho Paukkunen;Alexander Berg;Villu Soon;F. Ødegaard;P. Rosa - 通讯作者:
P. Rosa
Fertility-preserving myeloablative conditioning using single-dose CD117 antibody-drug conjugate in a rhesus gene therapy model
在恒河猴基因治疗模型中使用单剂量 CD117 抗体-药物偶联物进行保留生育力的清髓调理
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:16.6
- 作者:
N. Uchida;Ulana Stasula;Selami Demirci;Paula Germino;Malikiya A Hinds;Anh Le;Rebecca Chu;Alexander Berg;Xiong Liu;Ling Su;Xiaolin Wu;Allen E. Krouse;Seth Linde;Aylin C. Bonifacino;So Gun Hong;Cynthia E. Dunbar;Leanne Lanieri;A. Bhat;R. Palchaudhuri;Bindu M. Bennet;Megan D. Hoban;Kirk Bertelsen;Lisa M Olson;R. Donahue;J. Tisdale - 通讯作者:
J. Tisdale
Alexander Berg的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexander Berg', 18)}}的其他基金
NRI: Collaborative Research: Task Dependent Semantic Modeling for Robot Perception
NRI:协作研究:机器人感知的任务相关语义建模
- 批准号:
1526367 - 财政年份:2015
- 资助金额:
$ 30.1万 - 项目类别:
Standard Grant
CAREER: Situated Recognition: Learning to understand our local visual environment
职业:情境识别:学习了解我们当地的视觉环境
- 批准号:
1452851 - 财政年份:2015
- 资助金额:
$ 30.1万 - 项目类别:
Standard Grant
相似国自然基金
近代东北南满铁路沿线工业城市的建设和技术传播
- 批准号:52378030
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
薤白基于治疗“脘腹痞满胀痛”传统功效的抗胃癌药效物质基础与作用机制研究
- 批准号:82374014
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于体内代谢产物“谱-量-效”3D分析的厚朴“下气除满”药效物质研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于GPR30对铁蓄积的调控作用研究蒙药那仁满都拉抗骨质疏松的效应及机制
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
内蒙古满都拉-阿巴嘎旗地区晚古生代构造体制转换期的沉积学响应研究
- 批准号:42202239
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
XPS: FULL: DSD: Collaborative Research: Parallelizing and Accelerating Metagenomic Applications
XPS:完整:DSD:协作研究:并行化和加速宏基因组应用
- 批准号:
1720635 - 财政年份:2016
- 资助金额:
$ 30.1万 - 项目类别:
Standard Grant
XPS: FULL: DSD: Scalable High Performance with Halide and Simit Domain Specific Languages
XPS:完整:DSD:使用 Halide 和 Simit 领域特定语言的可扩展高性能
- 批准号:
1533753 - 财政年份:2015
- 资助金额:
$ 30.1万 - 项目类别:
Standard Grant
XPS: FULL: DSD: A Parallel Tensor Infrastructure (ParTI!) for Data Analysis
XPS:完整:DSD:用于数据分析的并行张量基础设施 (PartTI!)
- 批准号:
1533768 - 财政年份:2015
- 资助金额:
$ 30.1万 - 项目类别:
Standard Grant
XPS: FULL: DSD: Collaborative Research: Parallelizing and Accelerating Metagenomic Applications
XPS:完整:DSD:协作研究:并行化和加速宏基因组应用
- 批准号:
1533797 - 财政年份:2015
- 资助金额:
$ 30.1万 - 项目类别:
Standard Grant
XPS: FULL: DSD: Parallel Motion Planning for Cloud-connected Robots
XPS:完整:DSD:云连接机器人的并行运动规划
- 批准号:
1533844 - 财政年份:2015
- 资助金额:
$ 30.1万 - 项目类别:
Standard Grant