MRI: Acquisition of an Advanced Nanoscale Deformation with Imaging System for Multiscale Study of the Mechanical Behavior of Advanced Materials

MRI:通过成像系统获取先进的纳米级变形,用于先进材料机械行为的多尺度研究

基本信息

  • 批准号:
    1530891
  • 负责人:
  • 金额:
    $ 25.8万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-01 至 2017-02-28
  • 项目状态:
    已结题

项目摘要

Nanoindenter (indenting at a scale about thousand times finer than the human hair) is a highly versatile experimental tool for materials characterization that utilizes diamond indenter of 10-20 nanometers in diameter into the surface of materials to determine mechanical properties, including hardness, stiffness, adhesion strength, and wear. It also has the unique ability to rapidly and precisely make several hundred measurements for probing the surface properties of materials. These characteristics make nanoindentation an indispensable tool for research in disciplines ranging from Engineering to Biology, Chemistry, Geology and Medicine. The significance of the project relates to exploring at a fundamental level the mechanical behavior of materials that include the response at high impact, local hardness of thin films for electronic applications, and wear of biomedical implants. Furthermore, the project addresses the challenge of tailoring the surface properties of materials for a host of applications from susceptibility to scratching of electronic devices to adhesion of cells on biomedical implants, providing new directions in the development of next generation of advanced materials with superior mechanical performance and longer life. The project supports nanotechnology education in the Colleges of Science and Engineering at the University of Texas at El Paso and provides practical training to undergraduate and graduate students throughout the campus in a manner that will enable new understanding to emerge at the atomic or molecular level. The compact all-in-one configuration is envisioned to advance the research capabilities of more than 10 research groups, over 45 graduate students, 40 undergraduate students, and 5 post-doctoral researchers, in terms of new understanding at the nano or molecular level, thereby opening entirely new avenues of research in materials science and engineering, and biomaterials and biomedical engineering including the design of nanostructured materials, organic-inorganic hybrid materials, materials for nanoelectronics, and biomedical applications. The research team is committed to disseminate the educational resources on nanoindentation to facilitate broader participation of K-12 audience to scientific and engineering concepts on nanoindentation.Strength is a fundamental property of the majority of materials systems. Automated, advanced nanoindentation and scratch experiments are appropriately suitable for this challenging task because of high spatial resolution and throughput. The acquisition and subsequent utilization of an automated nanoscale deformation system for materials research at the University of Texas at El Paso constitutes the scope of the project. The goals are to use nanoindention in areas of research that concern deformation mechanisms in nanostructured materials, mechanics of mechanically-induced surface deformation in thin films and polymer nanocomposites, nanomechanical characterization of 3D-printable materials, biomechanical properties of tissue engineered biomaterials including bone, cartilage and skin, adhesion strength of cells, and mechanical properties of ceramic proppants used for hydraulic fracturing. The approach and method involves use of different modules (ultra-low mechanical force, dynamic mechanical analysis, extended z-range, high temperature stage, high load transducer, high resolution imaging, and fluorescence microscope), enabling the researchers to acquire new understanding of the materials at the nanoscale.
纳米压痕仪(压痕的尺度比人类头发细千倍)是一种高度通用的材料表征实验工具,它利用直径 10-20 纳米的金刚石压头进入材料表面来确定机械性能,包括硬度、刚度、附着力、耐磨性。它还具有快速、精确地进行数百次测量以探测材料表面特性的独特能力。这些特性使纳米压痕成为工程、生物学、化学、地质学和医学等学科研究中不可或缺的工具。该项目的意义在于从根本上探索材料的机械行为,包括高冲击下的响应、电子应用薄膜的局部硬度以及生物医学植入物的磨损。此外,该项目还解决了为一系列应用定制材料表面特性的挑战,从电子设备的刮擦敏感性到生物医学植入物上的细胞粘附,为开发具有卓越机械性能的下一代先进材料提供了新方向和更长的寿命。该项目支持德克萨斯大学埃尔帕索分校科学与工程学院的纳米技术教育,并为整个校园的本科生和研究生提供实践培训,使人们能够在原子或分子水平上产生新的理解。这一紧凑的一体式配置预计将提高 10 多个研究小组、超过 45 名研究生、40 名本科生和 5 名博士后研究人员在纳米或分子水平的新认识方面的研究能力,从而开辟了材料科学与工程、生物材料和生物医学工程的全新研究途径,包括纳米结构材料、有机-无机杂化材料、纳米电子材料和生物医学应用的设计。研究团队致力于传播纳米压痕教育资源,以促进K-12受众更广泛地参与纳米压痕的科学和工程概念。强度是大多数材料系统的基本属性。由于高空间分辨率和通量,自动化、先进的纳米压痕和划痕实验非常适合这项具有挑战性的任务。该项目的范围包括在德克萨斯大学埃尔帕索分校购买并随后利用用于材料研究的自动纳米级变形系统。目标是将纳米压痕技术应用于纳米结构材料的变形机制、薄膜和聚合物纳米复合材料中机械诱导的表面变形力学、3D 打印材料的纳米力学表征、组织工程生物材料(包括骨、软骨)的生物力学特性等研究领域。水力压裂用陶瓷支撑剂的外皮、细胞粘附强度和力学性能。该途径和方法涉及使用不同的模块(超低机械力、动态机械分析、扩展 z 范围、高温平台、高负载传感器、高分辨率成像和荧光显微镜),使研究人员能够获得新的理解纳米级材料。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Devesh Misra其他文献

Relationship Between Impact Toughness and Microstructure for the As-Rolled and Simulated HAZ of Low-Carbon Steel Containing Ti-Ca Oxide Particles
含Ti-Ca氧化物颗粒低碳钢轧态和模拟热影响区冲击韧性与显微组织的关系
Microstructure, Mechanical Properties and Deformation Behavior of Fe-28.7Mn-10.2Al-1.06C High Specific Strength Steel
Fe-28.7Mn-10.2Al-1.06C高比强度钢的显微组织、力学性能及变形行为
  • DOI:
    10.3390/met12040602
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Liang Ma;Zhengyou Tang;Zeyu You;Guofu Guan;Hua Ding;Devesh Misra
  • 通讯作者:
    Devesh Misra
Tailoring the Microstructure of Coarse-Grained HAZ in Steel for Large Heat Input Welding: Effect of Ti–Mg–Ce–V Inclusion/Precipitation Particles
调整大热输入焊接钢中粗晶热影响区的微观结构:Ti–Mg–Ce–V 夹杂物/沉淀颗粒的影响
  • DOI:
    10.1007/s11661-021-06321-6
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chao Wang;Junjie Hao;Jian Kang;Guo Yuan;Devesh Misra;Guodong Wang
  • 通讯作者:
    Guodong Wang
Effect of Q&P and Q&T Treatments on the Stability of Austenite and Mechanical Properties of Steel 0.2% C – 8.5% Mn – 3.0% Al
  • DOI:
    10.1007/s11041-023-00848-8
  • 发表时间:
    2023-01-01
  • 期刊:
  • 影响因子:
    0.6
  • 作者:
    Zhichao Li;Xinjing Li;Y. Mou;Devesh Misra;Xin Zhang;Lian;Huiping Li
  • 通讯作者:
    Huiping Li

Devesh Misra的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Devesh Misra', 18)}}的其他基金

Collaborative Research: The interaction of surfaces structured at the nanometer scale with the cells in the physiological environment
合作研究:纳米尺度结构的表面与生理环境中细胞的相互作用
  • 批准号:
    2224942
  • 财政年份:
    2023
  • 资助金额:
    $ 25.8万
  • 项目类别:
    Standard Grant
Ultrafine-grained Magnesium Alloys Manufactured by Multi-axial Forging: Elucidating Mechanisms of Achieving Both High Strength and High Ductility
多轴锻造制造超细晶镁合金:阐明实现高强度和高延展性的机制
  • 批准号:
    2130586
  • 财政年份:
    2022
  • 资助金额:
    $ 25.8万
  • 项目类别:
    Standard Grant
Ultrafine-grained Magnesium Alloys Manufactured by Multi-axial Forging: Elucidating Mechanisms of Achieving Both High Strength and High Ductility
多轴锻造制造超细晶镁合金:阐明实现高强度和高延展性的机制
  • 批准号:
    2130586
  • 财政年份:
    2022
  • 资助金额:
    $ 25.8万
  • 项目类别:
    Standard Grant
The Relationship Between Grain Structure and Deformation Behavior to the Fracture Mechanism in High Strength-High Ductility Combination Nanostructured Materials
高强高延复合纳米结构材料晶粒结构和变形行为与断裂机制的关系
  • 批准号:
    1602080
  • 财政年份:
    2016
  • 资助金额:
    $ 25.8万
  • 项目类别:
    Continuing Grant
The Interplay Between Grain Size and Austenite Stability on Constitutive Deformation Behavior of High Strength-High Ductility Combination Nanostructured Materials
晶粒尺寸和奥氏体稳定性之间的相互作用对高强度-高延性组合纳米结构材料本构变形行为的影响
  • 批准号:
    1458074
  • 财政年份:
    2014
  • 资助金额:
    $ 25.8万
  • 项目类别:
    Standard Grant
Processing-Structure-Property Relationship in the Fabrication of Hybrid Nanostructured Materials with Tunable Architecture
具有可调结构的混合纳米结构材料制造中的加工-结构-性能关系
  • 批准号:
    1458090
  • 财政年份:
    2014
  • 资助金额:
    $ 25.8万
  • 项目类别:
    Standard Grant
Processing-Structure-Property Relationship in the Fabrication of Hybrid Nanostructured Materials with Tunable Architecture
具有可调结构的混合纳米结构材料制造中的加工-结构-性能关系
  • 批准号:
    1331437
  • 财政年份:
    2013
  • 资助金额:
    $ 25.8万
  • 项目类别:
    Standard Grant
The Interplay Between Grain Size and Austenite Stability on Constitutive Deformation Behavior of High Strength-High Ductility Combination Nanostructured Materials
晶粒尺寸和奥氏体稳定性之间的相互作用对高强度-高延性组合纳米结构材料本构变形行为的影响
  • 批准号:
    1261883
  • 财政年份:
    2013
  • 资助金额:
    $ 25.8万
  • 项目类别:
    Standard Grant
Interfacial Nucleation and Growth of Hierarchical Structures and Phases in Polymer Nanocomposites
聚合物纳米复合材料中分层结构和相的界面成核和生长
  • 批准号:
    0824001
  • 财政年份:
    2009
  • 资助金额:
    $ 25.8万
  • 项目类别:
    Standard Grant
Nanoscale Near-Surface Deformation Response in Nanostructured Materials
纳米结构材料中的纳米级近表面变形响应
  • 批准号:
    0852795
  • 财政年份:
    2009
  • 资助金额:
    $ 25.8万
  • 项目类别:
    Standard Grant

相似国自然基金

高磁感取向硅钢表面氧化层内传质与获得抑制剂演变机理研究
  • 批准号:
    52374316
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
氮磷的可获得性对拟柱孢藻水华毒性的影响和调控机制
  • 批准号:
    32371616
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
脚手架蛋白RanBP9通过调控细胞周期停滞和获得SASP介导应激性衰老促进AKI向CKD转化的作用及机制
  • 批准号:
    82300777
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
SIRT3-SOD2-mtROS信号轴调控骨骼肌自噬在脓毒症相关获得性肌无力中的作用及机制研究
  • 批准号:
    82360382
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
KRAS(G12D)抑制剂在胰腺癌中获得性耐药的机制研究
  • 批准号:
    82373331
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

MRI: Track 1 Acquisition of an Advanced Low-altitude Earth Observing System (ALEOS) with Hyperspectral and LiDAR Capabilities to Advance Interdisciplinary Research and Training
MRI:第一轨道采购具有高光谱和 LiDAR 功能的先进低空地球观测系统 (ALEOS),以推进跨学科研究和培训
  • 批准号:
    2320164
  • 财政年份:
    2023
  • 资助金额:
    $ 25.8万
  • 项目类别:
    Standard Grant
MRI: Track 1 Acquisition of Dynamic Mixed Gas Sorption Analyzer-Mass Spectrometer to Enable Advanced Separation, Sensing, and Catalysis Research
MRI:轨道 1 采购动态混合气体吸附分析仪-质谱仪以实现先进的分离、传感和催化研究
  • 批准号:
    2320315
  • 财政年份:
    2023
  • 资助金额:
    $ 25.8万
  • 项目类别:
    Standard Grant
Equipment: MRI: Track 1 Acquisition of a GPU-Accelerated Computing Cluster for Advanced Optimization and Design in Multidisciplinary Research and Education
设备:MRI:Track 1 获取 GPU 加速计算集群,用于多学科研究和教育中的高级优化和设计
  • 批准号:
    2320649
  • 财政年份:
    2023
  • 资助金额:
    $ 25.8万
  • 项目类别:
    Standard Grant
MRI: Track 1 Acquisition of a Multifunctional Thermal Analysis Instrument for Interdisciplinary Research and Research Training in Advanced Nanomaterial Development
MRI:轨道 1 采购多功能热分析仪器,用于先进纳米材料开发的跨学科研究和研究培训
  • 批准号:
    2320284
  • 财政年份:
    2023
  • 资助金额:
    $ 25.8万
  • 项目类别:
    Standard Grant
Equipment:MRI Track 2 Acquisition of a 3D X-ray microscope for advanced specimen-based organismal research
设备:MRI Track 2 购买 3D X 射线显微镜,用于先进的基于标本的有机体研究
  • 批准号:
    2320473
  • 财政年份:
    2023
  • 资助金额:
    $ 25.8万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了