EAGER: Two-Dimensional Material-Based Epidermal Active Sensors for Brain Monitoring.
EAGER:用于大脑监测的基于二维材料的表皮主动传感器。
基本信息
- 批准号:1541684
- 负责人:
- 金额:$ 16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-07-01 至 2017-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Electroencephalographic (EEG) measures subtle voltage fluctuations along the scalp resulting from ionic current flows within the neurons of the brain. EEG is widely used as a low cost, portable, and noninvasive means to capture not only cognitive and memory performance, but also brain disorders like epilepsy and stroke. Conventional EEG recording is obtained by placing individual thick and stiff electrodes on the scalp with conductive gel after skin abrasion which enhances electrode-skin contact. For many decades, EEG technology has suffered from limitations such as low spatial resolution, poor signal-to-noise ratio without proper signal amplification, time consuming and obstructive electrode connections, and short measurement time as gel dries out. Such limitations are partially due to the incompatibility between the soft, curvilinear, and deformable human skin and the hard, planar, and rigid electrodes and electronics. The ultrathin, high electronic performance, and transparency of atomically thick two-dimensional materials offer clear mechanical, electronic, and optical advantages over silicon in the neuroelectronics. This research proposes to explore the idea of replacing conventional rigid EEG electrodes by tattoo-like ultrathin, ultrasoft, dry electrodes and signal amplifiers fabricated from two-dimensional materials. Preliminary results indicate this idea is feasible and further research will prove the feasibility and future prospects for tattoo-like, long lasting, and high performance neuroelectronics to benefit society. In addition, the graduate student and post-doctoral researchers working on this research effort will gain advanced scientific and engineering skills needed to be technical leaders in industry, academia or government post-graduate careers. Moreover, undergraduate students from diverse backgrounds will be recruited to participate in the research effort to promote advanced science and engineering careers.The objective of this proposal is to carry out a feasibility study that two-dimensional materials such as graphene and atomically thin molybdenum disulfide can be applied as the electrode and amplifier materials for noninvasive, long-term, high fidelity Electroencephalographic sensing. The major technical barrier towards two-dimensional materials based epidermal active EEG sensor lies in the device design, heterogeneous fabrication, and reliable bio-integration with the final goal of enhanced EEG sensing. An innovative active electrode architecture is proposed in which graphene is employed as both the sensing and gate electrodes, and molybdenum disulfide integrated with ultrathin polymer dielectrics and graphene source/drain as the on-site signal amplifier. Two research thrusts are proposed to accomplish the feasibility study: i) fabricating and validating graphene based passive epidermal EEG electrodes, and ii) integrating molybdenum disulfide vertically on top of the graphene electrode with ultrathin polymer dielectrics and graphene source/drain as a transistor amplifier for active EEG recording. The expected outcome is an affirmative decision on the feasibility of an integrated neuroelectronics that can be conformally laminated on human skin without conductive gel but still able to record long term, high fidelity EEG with orders of magnitude signal amplification. For the targeted gain of several hundreds the active electrode minimizes both the extrinsic noise and allows substantial reduction of the electrode arrays.
脑电图(EEG)测量沿头皮的微妙电压波动,这是由于大脑神经元内的离子电流流而产生的。脑电图被广泛用作低成本,便携式和无创手段,不仅可以捕获认知和记忆表现,还可以捕获癫痫和中风等脑部疾病。传统的脑电图记录是通过在皮肤磨损后用导电凝胶将单个厚和刚性电极放置在头皮上,从而增强了电极皮的接触。数十年来,脑电图技术一直受到限制,例如低空间分辨率,信号噪声较差,没有正确的信号放大,耗时和阻塞性电极连接以及凝胶干燥时的测量时间短。这种局限性部分是由于软,曲线和可变形的人皮以及硬,平面和刚性电极和电子产品之间的不兼容。在神经电子学中,原子较厚的二维材料的超薄,高电子性能和透明度可提供明确的机械,电子和光学优势。这项研究建议探索用纹身般的Ultrathin,Ultrasoft,干电极和由二维材料制造的信号放大器代替常规的刚性EEG电极的想法。初步结果表明这一想法是可行的,进一步的研究将证明纹身般的,持久和高性能神经电子学的可行性和未来前景可以使社会受益。此外,从事这项研究工作的研究生和博士后研究人员将获得行业,学术界或政府研究生职业的技术领导者所需的高级科学和工程技能。此外,将招募来自不同背景的本科生参加研究工作,以促进先进的科学和工程职业。该建议的目的是进行可行性研究,即可以将二维材料(例如石墨烯和原子上薄的钼二硫化物)应用于无效的效率,以供无线电效应,以供无线电效应。基于二维材料的表皮活性EEG传感器的主要技术障碍在于设备设计,异质制造和可靠的生物整合,最终的脑电图感测。提出了一种创新的主动电极结构,其中将石墨烯既用作感应和栅极电极,而将钼二硫化物则与超薄聚合物介电和石墨烯源/排水集成为现场信号放大器。提出了两项研究推力来完成可行性研究:i)制造和验证基于石墨烯的被动表皮EEG电极,ii)ii)将钼二硫化物垂直整合在石墨烯电极的顶部,并将超薄聚合物介质和石墨烯源和晶体管散发器的排水源/排水量集成,以示置为主动eeg记录。预期的结果是关于综合神经电子学的可行性的肯定决定,可以在没有导电凝胶的情况下将人类皮肤合并地层压,但仍然能够记录长期,高富达脑电图,并具有数量级信号的订单。为了目标增益数百个,活性电极可最大程度地减少外部噪声,并大大减少电极阵列。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nanshu Lu其他文献
Combining VR with electroencephalography as a frontier of brain-computer interfaces
VR与脑电图相结合作为脑机接口的前沿
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Hongbian Li;Hyonyoung Shin;Luis Sentis;Ka;José del R. Millán;Nanshu Lu - 通讯作者:
Nanshu Lu
A 1V 0.25uW inverter-stacking amplifier with 1.07 noise efficiency factor
噪声效率系数为 1.07 的 1V 0.25uW 逆变器堆叠放大器
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Linxiao Shen;Nanshu Lu;Nan Sun - 通讯作者:
Nan Sun
Non-invasive Cardiac Output Monitoring in Congenital Heart Disease
先天性心脏病的无创心输出量监测
- DOI:
10.1007/s40746-023-00274-1 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
A. Tandon;Sarnab Bhattacharya;Ayse Morca;Omer T Inan;Daniel S Munther;Shawn D. Ryan;Samir Q Latifi;Nanshu Lu;J. Lasa;Bradley S Marino;O. Baloglu - 通讯作者:
O. Baloglu
Towards Simultaneous Noninvasive Arterial and Venous Oxygenation Monitoring with Wearable E-Tattoo*
通过可穿戴电子纹身进行同步无创动脉和静脉氧合监测*
- DOI:
10.1109/embc40787.2023.10340010 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Philip Tan;Eric Wang;Shreya Tamma;Sarnab Bhattacharya;Nanshu Lu - 通讯作者:
Nanshu Lu
Human Stress Response and Perceived Safety during Encounters with Quadruped Robots
与四足机器人相遇时人类的压力反应和感知安全
- DOI:
10.48550/arxiv.2403.17270 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Ryan Gupta;Hyonyoung Shin;Emily Norman;Keri K. Stephens;Nanshu Lu;Luis Sentis - 通讯作者:
Luis Sentis
Nanshu Lu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nanshu Lu', 18)}}的其他基金
ASCENT: Multimodal chest e-tattoo with customized IC and deep learning algorithm for tracking and predicting progressive pneumonia
ASCENT:多模式胸部电子纹身,具有定制 IC 和深度学习算法,用于跟踪和预测进行性肺炎
- 批准号:
2133106 - 财政年份:2021
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
Mechanics of Miniature Surface Craters for Reversible Adhesion
可逆粘附的微型表面凹坑的力学
- 批准号:
1663551 - 财政年份:2017
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
Stretchable Planar Antenna Modulated by Integrated Circuit (SPAMIC) for the Near Field Communication (NFC) of Epidermal Electrophysiological Sensors (EEPS)
用于表皮电生理传感器 (EEPS) 近场通信 (NFC) 的集成电路 (SPAMIC) 调制可拉伸平面天线
- 批准号:
1509767 - 财政年份:2015
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
CAREER: Flexoelectricity of Nanomaterials on Deformable Substrates
职业:可变形基底上纳米材料的柔性电
- 批准号:
1351875 - 财政年份:2014
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
Adhesion Mechanics of Bio-Electronics Interface
生物电子界面的粘附力学
- 批准号:
1301335 - 财政年份:2013
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
相似国自然基金
二维铁电材料尺寸效应的物理机制探索
- 批准号:52302184
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
大尺寸二维半导体横向异质结/超晶格可控制备及物性研究
- 批准号:52302183
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
大尺寸二维硒化锡单晶的生长及铁电压电性质研究
- 批准号:52372002
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
二维p型碲烯的大尺寸单晶生长与晶体管阵列研究
- 批准号:62304019
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
二维PtTe范德华材料缺陷簇尺寸调控及其电催化丙酮加氢的研究
- 批准号:22305184
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
EAGER: Transfer by Contact using Adhesion Engineering for Integration of Two-Dimensional Materials into Functional Devices
EAGER:利用粘合工程通过接触转移将二维材料集成到功能器件中
- 批准号:
2135846 - 财政年份:2021
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
EAGER: Investigation of local strain and single photon emitters in two-dimensional materials
EAGER:二维材料中局部应变和单光子发射器的研究
- 批准号:
2128534 - 财政年份:2021
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
EAGER: SUPER: Search for high-temperature superconductivity in heterostructured two-dimensional organic materials
EAGER:SUPER:寻找异质结构二维有机材料的高温超导性
- 批准号:
2133014 - 财政年份:2021
- 资助金额:
$ 16万 - 项目类别:
Continuing Grant
EAGER: Enhancement of Piezoelectric Properties in two-dimensional materials and its application
EAGER:二维材料压电性能的增强及其应用
- 批准号:
2033044 - 财政年份:2020
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
EAGER: Numerical two-dimensional fluid simulations and finite element analysis to model an adaptive and flexible microplasma discharge system.
EAGER:数值二维流体模拟和有限元分析,用于对自适应且灵活的微等离子体放电系统进行建模。
- 批准号:
1917144 - 财政年份:2019
- 资助金额:
$ 16万 - 项目类别:
Standard Grant