CSR:Small:Collaborative Research:EDS: Systems and Algorithmic Support for Managing Complexity in Sensorized Distributed Systems

CSR:小:协作研究:EDS:管理传感器化分布式系统复杂性的系统和算法支持

基本信息

  • 批准号:
    1526841
  • 负责人:
  • 金额:
    $ 20万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-10-01 至 2018-09-30
  • 项目状态:
    已结题

项目摘要

Commercial buildings, the energy grid and transportation systems are examples of emerging distributed systems that are beginning to be instrumented with a large number of sensors and actuators for sensing ambient environmental conditions, user occupancy, state of energy use etc. The goal of such instrumentation is to improve safety, utility and reduce costs. This is a hard problem due to interaction of humans, devices and networks in an operating environment with uncertainties regarding veracity, timeliness, meaning and value of sensor data. A large number of sensors must be provisioned, monitored and maintained by system operators. This is currently a manual and error prone task. Deploying, managing and adapting a sensorized system at scale become nearly impossible. In the micro-grid testbed of networked buildings used by this project, there are over a hundred thousand alarms raised per day by the first fifty buildings under observation. In reality, despite thousands of reported sensors there are only a few hundred distinct types of sensors. The key is to reduce the complexity of sensorized distributed systems using automated or semi-automated methods to characterize sensors, determine their type based on the sensor data streams and make inferences about the quality of sensor data with minimal operator effort. This project will apply advances in unsupervised machine learning methods to compose, aggregate and interpret sensory data spatially and over time in order to enable robust derivation of semantically useful sensory information for applications and users resulting in better-utilized and robust systems. The intellectual merit of the project lies in building an information flow model, with a systematic capture and use of sensor meta-data that enables algorithmic approaches to data composition and building inferences. Using the proposed learning based automation approach along with programming and runtime support, the project will devise a data-to-decision flow for distributed systems operating across timing and reliability constraints. The project outlines smart buildings as an application driver for the envisioned sensorized distributed system with a working real-life testbed. This research will directly contribute to methods for discovery of tele-connections, such as dependence and causal relationships, between various sensory data streams which are crucial for devising effective control of devices connected to these distributed systems.The broader impacts of the project include advances in the design, deployment, management and programming methodologies for a new class of distributed computing systems that can deal with changing characteristics and topologies of the underlying sensor network. The particular testbed will demonstrate, how such methods can create energy-efficient, sustainable, and comfortable buildings for occupants. A number of educational and outreach activities have been planned to train the next generation talent for the emerging area of a data-driven internet of things. For the broader research community, the project will make available, SensorDepot, an open-source extensible architecture for implementing applications for sensorized distributed systems.
商业建筑、能源网和交通系统是新兴分布式系统的例子,这些系统开始配备大量传感器和执行器,用于感测周围环境条件、用户占用、能源使用状态等。此类仪器的目标是提高安全性、实用性并降低成本。这是一个难题,因为操作环境中人类、设备和网络的交互存在传感器数据的准确性、及时性、意义和价值的不确定性。系统操作员必须配置、监控和维护大量传感器。目前这是一项手动且容易出错的任务。大规模部署、管理和调整传感系统几乎变得不可能。在该项目使用的联网建筑微电网测试台中,观察到的前50栋建筑每天发出超过十万个警报。事实上,尽管报道了数千个传感器,但只有几百种不同类型的传感器。关键是要降低传感器化分布式系统的复杂性,使用自动化或半自动化方法来表征传感器,根据传感器数据流确定其类型,并以最少的操作员努力推断传感器数据的质量。该项目将应用无监督机器学习方法的进步来组合、聚合和解释空间和时间上的感知数据,以便为应用程序和用户可靠地导出语义上有用的感知信息,从而形成更好利用和强大的系统。该项目的智力优势在于构建信息流模型,系统地捕获和使用传感器元数据,从而实现数据组合和构建推理的算法方法。使用所提出的基于学习的自动化方法以及编程和运行时支持,该项目将为跨时间和可靠性约束运行的分布式系统设计数据到决策流程。该项目将智能建筑概述为设想的传感分布式系统的应用驱动程序,并具有工作的现实测试台。这项研究将直接有助于发现远程连接的方法,例如各种传感数据流之间的依赖性和因果关系,这对于设计连接到这些分布式系统的设备的有效控制至关重要。该项目的更广泛影响包括新型分布式计算系统的设计、部署、管理和编程方法,可以处理底层传感器网络不断变化的特征和拓扑。特定的测试平台将展示这些方法如何为居住者创造节能、可持续且舒适的建筑。计划开展许多教育和外展活动,为数据驱动的物联网新兴领域培训下一代人才。对于更广泛的研究社区,该项目将提供 SensorDepot,这是一种开源可扩展架构,用于实现传感器化分布式系统的应用程序。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rajesh Gupta其他文献

CT Evaluation of Acute Pancreatitis and its Prognostic Correlation with CT Severity Index.
急性胰腺炎的 CT 评估及其与 CT 严重程度指数的预后相关性。
Upgrading Reliability of Water Distribution Networks Recognizing Valve Locations
识别阀门位置,提高配水网络的可靠性
  • DOI:
    10.1016/j.proeng.2014.11.201
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rajesh Gupta;A. Baby;P. Arya;L. Ormsbee
  • 通讯作者:
    L. Ormsbee
Accurate Analysis of Solar PV Module
太阳能光伏组件精准分析
Promoting school climate and health outcomes with the SEHER multi-component secondary school intervention in Bihar, India: a cluster-randomised controlled trial
通过印度比哈尔邦 SEHER 多组成部分中学干预措施改善学校氛围和健康成果:整群随机对照试验
  • DOI:
    10.1016/s0140-6736(18)31615-5
  • 发表时间:
    2018-12-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sachin Shinde;H. Weiss;B. Varghese;Prachi Kh;eparkar;eparkar;B. Pereira;Amit Sharma;Rajesh Gupta;D. Ross;G. Patton;V. Patel
  • 通讯作者:
    V. Patel
Investigation of biomass degradation mechanism in pretreatment of switchgrass by aqueous ammonia and sodium hydroxide.
氨水和氢氧化钠预处理柳枝稷生物质降解机理研究
  • DOI:
    10.1016/j.biortech.2010.05.039
  • 发表时间:
    2010-11-01
  • 期刊:
  • 影响因子:
    11.4
  • 作者:
    Rajesh Gupta;Y. Y. Lee
  • 通讯作者:
    Y. Y. Lee

Rajesh Gupta的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rajesh Gupta', 18)}}的其他基金

Collaborative Research: Predictive Risk Investigation SysteM (PRISM) for Multi-layer Dynamic Interconnection Analysis
合作研究:用于多层动态互连分析的预测风险调查系统(PRISM)
  • 批准号:
    1940291
  • 财政年份:
    2019
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
BD Spokes: SPOKE: WEST: Collaborative: MetroInsight: Knowledge Discovery and Real-Time Interventions from Sensory Data Flows in Urban Spaces
BD 发言:发言:WEST:协作:MetroInsight:城市空间中感知数据流的知识发现和实时干预
  • 批准号:
    1636879
  • 财政年份:
    2016
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
CPS: Frontiers: Collaborative Research: ROSELINE: Enabling Robust, Secure and Efficient Knowledge of Time Across the System Stack
CPS:前沿:协作研究:ROSELINE:在整个系统堆栈中实现稳健、安全和高效的时间知识
  • 批准号:
    1329766
  • 财政年份:
    2014
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: Variability-Aware Software for Efficient Computing with Nanoscale Devices
协作研究:利用纳米级设备进行高效计算的可变性感知软件
  • 批准号:
    1029783
  • 财政年份:
    2010
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
CPS:Small:Collaborative Research:Localization and System Services for SpatioTemporal Actions in Cyber-Physical Systems
CPS:小:协作研究:网络物理系统中时空动作的定位和系统服务
  • 批准号:
    0932360
  • 财政年份:
    2009
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Cyber-Physical Systems Week (CPSWeek 2009)
网络物理系统周 (CPSWeek 2009)
  • 批准号:
    0936350
  • 财政年份:
    2009
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: Design and Run-time Techniques for Physically Coupled Software
协作研究:物理耦合软件的设计和运行技术
  • 批准号:
    0820034
  • 财政年份:
    2008
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Modeling and Optimization of Thermal and Energy Efficient Processing in Multi-Core System-Chips
多核系统芯片热能高效处理的建模和优化
  • 批准号:
    0702792
  • 财政年份:
    2007
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
U.S.-France Cooperative Research (INRIA): A Semantic Foundation For C++ based IC/System Design
美法合作研究 (INRIA):基于 C 的 IC/系统设计的语义基础
  • 批准号:
    0554678
  • 财政年份:
    2005
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Constrained Power and Performance Optimization for Embedded Systems
嵌入式系统的受限功耗和性能优化
  • 批准号:
    0355071
  • 财政年份:
    2003
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant

相似国自然基金

小分子代谢物Catechin与TRPV1相互作用激活外周感觉神经元介导尿毒症瘙痒的机制研究
  • 批准号:
    82371229
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
DHEA抑制小胶质细胞Fis1乳酸化修饰减轻POCD的机制
  • 批准号:
    82301369
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
SETDB1调控小胶质细胞功能及参与阿尔茨海默病发病机制的研究
  • 批准号:
    82371419
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
PTBP1驱动H4K12la/BRD4/HIF1α复合物-PKM2正反馈环路促进非小细胞肺癌糖代谢重编程的机制研究及治疗方案探索
  • 批准号:
    82303616
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: CSR: Small: Caphammer: A New Security Exploit in Energy Harvesting Systems and its Countermeasures
合作研究:CSR:小型:Caphammer:能量收集系统的新安全漏洞及其对策
  • 批准号:
    2314680
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Collaborative Research: CSR: Small: Cross-layer learning-based Energy-Efficient and Resilient NoC design for Multicore Systems
协作研究:CSR:小型:基于跨层学习的多核系统节能和弹性 NoC 设计
  • 批准号:
    2321225
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: CSR: Small: Caphammer: A New Security Exploit in Energy Harvesting Systems and its Countermeasures
合作研究:CSR:小型:Caphammer:能量收集系统的新安全漏洞及其对策
  • 批准号:
    2314681
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Collaborative Research: CSR: Small: Cross-layer learning-based Energy-Efficient and Resilient NoC design for Multicore Systems
协作研究:CSR:小型:基于跨层学习的多核系统节能和弹性 NoC 设计
  • 批准号:
    2321224
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: CSR: Small: Expediting Continual Online Learning on Edge Platforms through Software-Hardware Co-designs
协作研究:企业社会责任:小型:通过软硬件协同设计加快边缘平台上的持续在线学习
  • 批准号:
    2312158
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了