Collaborative Research: Neural-cognitive analysis of spatial scenes with competing, dynamic sound sources
合作研究:对具有竞争性动态声源的空间场景进行神经认知分析
基本信息
- 批准号:1539376
- 负责人:
- 金额:$ 33.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project investigates neurocognitive mechanisms that extract important information from a mixture of sound sources. Imagine a day where you could no longer distinguish the honking horn of a car coming right at you from other street sounds. This cognitive ability to attend to one sound source while ignoring others presents an everyday challenge for people with hearing impairments. While the basic neural mechanisms for detecting and localizing single sounds are known, we do not know how the brain accomplishes auditory scene analysis with multiple sound sources. So far, studies have focused on lower brain centers in rodents and carnivores, while the neural mechanisms for source segregation are expected to be at higher levels, in the auditory cortex. This study will record the responses of single cortical neurons and conduct human-subject experiments for the same acoustic scenarios. Based on the integration of these results, a functional auditory model will be developed. This will provide new scientific insights and enable intelligent algorithms for hearing aids, social robotics, and surveillance systems. The project will provide research opportunities for graduate and undergraduate students and include outreach activities and online learning resources for high-school and college students to increase the public awareness of neuroscience. The research results and the model will be shared with the academic community. This proposal will use an interdisciplinary approach to gain understanding of the central mechanisms of auditory scene analysis by integrating psychoacoustical experiments with single-unit electrophysiology. The study will investigate how the auditory system localizes a target sound temporally embedded in a spatially separated masker. Single-unit recording will target the caudal region of the auditory cortex, the putative "where" pathway for complex sound analysis. We hypothesize that cortical activity represents both the old and new sounds, so that the internal representation of the "old" masking source can be subtracted from the overall mixture. This facilitates a clearer perception of the "new" target element, demonstrating a fundamental psychophysical phenomenon within auditory scene analysis. To test this hypothesis, we will identify the neural signals for individual sound sources separately and in combination. We will then interpret these signals based on the perceptual data gained from sound localization tests with multiple moving and stationary sound sources. Discovering the fundamental brain mechanisms for auditory scene analysis will provide new neurophysiological insight into a well-established psychophysical field and offer potential technical solutions for sound-source segregation.
该项目研究了神经认知机制,这些机制从声源的混合物中提取重要信息。想象一下,有一天,您再也无法区分您的鸣喇叭与其他街头的声音。这种认知能力能够参与一个声音来源,而无视其他人则给有听力障碍的人带来了日常挑战。尽管已知用于检测和定位单声音的基本神经机制,但我们不知道大脑如何使用多个声音来完成听觉场景分析。到目前为止,研究集中在啮齿动物和食肉动物的下部大脑中心,而在听觉皮层中,源隔离的神经机制预计将处于较高水平。这项研究将记录单皮质神经元的反应,并为相同的声学场景进行人类受试者实验。 基于这些结果的集成,将开发功能性听觉模型。 这将提供新的科学见解,并为助听器,社会机器人技术和监视系统提供智能算法。该项目将为研究生和本科生提供研究机会,并为高中生和大学生提供推广活动和在线学习资源,以提高公众对神经科学的认识。研究结果和模型将与学术界共享。该提案将使用跨学科的方法通过将心理体性实验与单单体电生理学相结合,以了解听觉场景分析的中心机制。该研究将研究听觉系统如何将目标声音定位在暂时嵌入空间分离的掩蔽器中。单单元记录将针对听觉皮层的尾端区域,即用于复杂声音分析的推定“其中”途径。我们假设皮质活动代表旧声音和新声音,因此可以从整体混合物中减去“旧”掩蔽源的内部表示。这有助于对“新”目标元素的更清晰的看法,证明了听觉场景分析中的基本心理物理现象。为了检验这一假设,我们将分别识别单个声音源的神经信号。然后,我们将根据来自多个移动和固定声源的声音定位测试获得的感知数据来解释这些信号。发现听觉场景分析的基本大脑机制将为建立良好的心理物理领域提供新的神经生理学洞察力,并为声音源隔离提供潜在的技术解决方案。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yi Zhou其他文献
A New Sequential Block Partial Update Normalized Least Mean M-Estimate Algorithm and Its Convergence Performance Analysis
一种新的顺序块部分更新归一化最小均值M估计算法及其收敛性能分析
- DOI:
10.1109/isspit.2007.4458180 - 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
S. Chan;Yi Zhou;K. Ho - 通讯作者:
K. Ho
Superoscillation focusing with suppressed sidebands by destructive interference
通过相消干涉抑制边带的超振荡聚焦
- DOI:
10.1364/oe.474346 - 发表时间:
2022 - 期刊:
- 影响因子:3.8
- 作者:
Kun Zhang;Fengliang Dong;Shaokui Yan;Lihua Xu;Haifeng Hu;Zhiwei Song;Zhengguo Shang;Yi Zhou;Yufei Liu;Zhongquan Wen;Luru Dai;Weiguo Chu;Gang Chen - 通讯作者:
Gang Chen
Adsorptive removal of PPCPs from aqueous solution using carbon-based composites: A review
使用碳基复合材料吸附去除水溶液中的 PPCP:综述
- DOI:
10.1016/j.cclet.2021.09.029 - 发表时间:
2021-09 - 期刊:
- 影响因子:9.1
- 作者:
Tong Wang;Jie He;Yi Zhou;Jian Lu;Zhaohui Wang;Yanbo Zhou - 通讯作者:
Yanbo Zhou
Industrial policy and differentiated regional diversifications: Evidence from Chinese cities
产业政策与差异化区域多元化:来自中国城市的证据
- DOI:
10.1016/j.cities.2021.103348 - 发表时间:
2021-12 - 期刊:
- 影响因子:6.7
- 作者:
Yi Zhou;Chaoran Hu - 通讯作者:
Chaoran Hu
A study on operation control of urban centralized heating system based on cyber-physical systems
基于信息物理系统的城市集中供热系统运行控制研究
- DOI:
10.1016/j.energy.2019.116569 - 发表时间:
2020-01 - 期刊:
- 影响因子:9
- 作者:
Xiaojie Lin;Sibin Liu;Shuowei Lu;Zhongbo Li;Yi Zhou;Zitao Yu;Wei Zhong - 通讯作者:
Wei Zhong
Yi Zhou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yi Zhou', 18)}}的其他基金
CAREER: Reinforcement Learning-Based Control of Heterogeneous Multi-Agent Systems in Structured Environments: Algorithms and Complexity
职业:结构化环境中异构多智能体系统的基于强化学习的控制:算法和复杂性
- 批准号:
2237830 - 财政年份:2023
- 资助金额:
$ 33.78万 - 项目类别:
Continuing Grant
Collaborative Research: SCALE MoDL: Advancing Theoretical Minimax Deep Learning: Optimization, Resilience, and Interpretability
合作研究:SCALE MoDL:推进理论极小极大深度学习:优化、弹性和可解释性
- 批准号:
2134223 - 财政年份:2021
- 资助金额:
$ 33.78万 - 项目类别:
Continuing Grant
CIF: Small: Self-Adaptive Optimization Algorithms with Fast Convergence via Geometry-Adapted Hyper-Parameter Scheduling
CIF:小型:通过几何自适应超参数调度实现快速收敛的自适应优化算法
- 批准号:
2106216 - 财政年份:2021
- 资助金额:
$ 33.78万 - 项目类别:
Standard Grant
相似国自然基金
基于多模态动态图神经网络的教师在线协作反思测评与干预研究
- 批准号:62307033
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
多冗余度机器人的跨层协作神经动力学优化策略研究
- 批准号:62373157
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
直立抗扰任务下的踝关节外骨骼协作控制策略研究
- 批准号:61903286
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
面向复杂事件分析的脑机模式协作循环神经网络研究
- 批准号:61806086
- 批准年份:2018
- 资助金额:27.0 万元
- 项目类别:青年科学基金项目
基于学习算法的混杂多智能体系统协作与优化研究
- 批准号:61772086
- 批准年份:2017
- 资助金额:67.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Spintronics Enabled Stochastic Spiking Neural Networks with Temporal Information Encoding
合作研究:自旋电子学支持具有时间信息编码的随机尖峰神经网络
- 批准号:
2333881 - 财政年份:2024
- 资助金额:
$ 33.78万 - 项目类别:
Standard Grant
Collaborative Research: Spintronics Enabled Stochastic Spiking Neural Networks with Temporal Information Encoding
合作研究:自旋电子学支持具有时间信息编码的随机尖峰神经网络
- 批准号:
2333882 - 财政年份:2024
- 资助金额:
$ 33.78万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
- 批准号:
2412357 - 财政年份:2024
- 资助金额:
$ 33.78万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Toward Understandability and Interpretability for Neural Language Models of Source Code
合作研究:SHF:媒介:实现源代码神经语言模型的可理解性和可解释性
- 批准号:
2423813 - 财政年份:2024
- 资助金额:
$ 33.78万 - 项目类别:
Standard Grant
CRCNS US-German Collaborative Research Proposal: Neural and computational mechanisms of flexible goal-directed decision making
CRCNS 美德合作研究提案:灵活目标导向决策的神经和计算机制
- 批准号:
2309022 - 财政年份:2024
- 资助金额:
$ 33.78万 - 项目类别:
Standard Grant