Market Expectations, Long Term Risk, and Stochastic Spectral Theory

市场预期、长期风险和随机谱理论

基本信息

  • 批准号:
    1536503
  • 负责人:
  • 金额:
    $ 29.36万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-08-01 至 2019-07-31
  • 项目状态:
    已结题

项目摘要

This project focuses on learning expectations of market participants about probability distributions of future asset returns from the current prices of options on those assets combined with assumptions and historical data about the underlying risk-return trade-offs in the economy. Risk assessments are based on historical data. The limitation of the historical approach is in potentially underestimating the probability of events that did not occur in the historical data under consideration. The goal of this research is to improve probability models of markets by developing theory and methods for calibrating them to additional sources of information in addition to historical data. This will help put risk management and investment decision making on a more solid foundation and will aid the financial services industry and market regulators in extracting implied probability distributions from market prices of options to improve risk management. The project is interdisciplinary, drawing on the fields of operations research, economics, probability theory and mathematical analysis and will have a positive impact on education and human resources development.The methodology is based on far-reaching extensions of the recent Recovery Theorem of Ross that shows that when all uncertainty (risk) in the economy is modeled as a discrete-time irreducible finite-state Markov chain and the stochastic discount factor is transition independent, then there exists a unique recovery of the Markov chain's transition probability matrix from options prices. We aim to extend the recovery methodology to general classes of continuous-time Markov processes, including diffusions and jump-diffusions. On the other hand, we aim to relax the transition independence assumption by building on the fundamental work of Hansen and Scheinkman on long term risk. Our approach aims to combine structural assumptions on the stochastic discount factor drawn from the macro-finance literature with the joint calibration of the resulting models to currently observed market options prices together with historical time series data on the underlying asset returns. This will involve analytical development of the spectral theory for Markov processes and computational implementations of recoveries in specific classes of models.
该项目的重点是学习市场参与者对这些资产期权当前资产价格的概率分布的学习期望,并结合了有关经济中潜在的风险回收权衡的假设和历史数据。风险评估基于历史数据。 历史方法的局限性在于可能低估所考虑的历史数据中未发生事件的可能性。 这项研究的目的是通过开发理论和方法来改善市场的概率模型,除历史数据外,还将其校准为其他信息来源。 这将有助于将风险管理和投资决策置于更坚实的基础上,并将帮助金融服务行业和市场监管机构从期权市场价格中提取隐含的概率分配以改善风险管理。 The project is interdisciplinary, drawing on the fields of operations research, economics, probability theory and mathematical analysis and will have a positive impact on education and human resources development.The methodology is based on far-reaching extensions of the recent Recovery Theorem of Ross that shows that when all uncertainty (risk) in the economy is modeled as a discrete-time irreducible finite-state Markov chain and the stochastic discount factor is transition independent, then there exists a unique recovery马尔可夫链的过渡概率矩阵来自期权价格。我们旨在将恢复方法扩展到连续时间马尔可夫流程的一般类别,包括扩散和跳膨胀。另一方面,我们旨在通过建立汉森和Scheinkman对长期风险的基本工作来放松过渡独立性假设。 我们的方法旨在将宏观金融文献中随机折现因子的结构性假设与最终观察到的市场期权价格的联合校准以及有关基础资产回报的历史时间序列数据以及有关型模型的联合校准结合起来。这将涉及对马尔可夫过程的频谱理论的分析发展,以及在特定类别类别中的恢复性的计算实现。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Vadim Linetsky其他文献

TIME‐CHANGED MARKOV PROCESSES IN UNIFIED CREDIT‐EQUITY MODELING
统一信用-股权建模中的时变马尔可夫过程
  • DOI:
    10.1111/j.1467-9965.2010.00411.x
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Rafael Mendoza;Peter Carr;Vadim Linetsky
  • 通讯作者:
    Vadim Linetsky

Vadim Linetsky的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Vadim Linetsky', 18)}}的其他基金

Asset Allocation: A Statistical Learning Approach
资产配置:一种统计学习方法
  • 批准号:
    1916616
  • 财政年份:
    2019
  • 资助金额:
    $ 29.36万
  • 项目类别:
    Standard Grant
Interest Rate Modeling at the Zero Lower Bound: Applications of Diffusions with Sticky Boundaries
零下限的利率建模:粘性边界扩散的应用
  • 批准号:
    1514698
  • 财政年份:
    2015
  • 资助金额:
    $ 29.36万
  • 项目类别:
    Standard Grant
Spectral Methods for Optimal Stopping and First Passage Problems with Applications in Financial Mathematics
最优停止和首次通过问题的谱方法及其在金融数学中的应用
  • 批准号:
    1109506
  • 财政年份:
    2011
  • 资助金额:
    $ 29.36万
  • 项目类别:
    Standard Grant
Multivariate Dynamic Stochastic Models of Credit Risk
信用风险的多元动态随机模型
  • 批准号:
    1030486
  • 财政年份:
    2010
  • 资助金额:
    $ 29.36万
  • 项目类别:
    Standard Grant
Time Changes of Markov Processes: Applications in Financial Mathematics
马尔可夫过程的时间变化:在金融数学中的应用
  • 批准号:
    0802720
  • 财政年份:
    2008
  • 资助金额:
    $ 29.36万
  • 项目类别:
    Continuing Grant
GOALI: Modeling and Managing Customer Default Risk in a Manufacturing Enterprise
目标:对制造企业中的客户违约风险进行建模和管理
  • 批准号:
    0654043
  • 财政年份:
    2007
  • 资助金额:
    $ 29.36万
  • 项目类别:
    Standard Grant
Collaborative Research: High-Performance Computational Methods for Continuous-Time Markov Processes in Financial Engineering
合作研究:金融工程中连续时间马尔可夫过程的高性能计算方法
  • 批准号:
    0422937
  • 财政年份:
    2004
  • 资助金额:
    $ 29.36万
  • 项目类别:
    Standard Grant
Collaborative Research: High-Performance Computational Methods for Continuous-Time Markov Processes in Financial Engineering
合作研究:金融工程中连续时间马尔可夫过程的高性能计算方法
  • 批准号:
    0223354
  • 财政年份:
    2002
  • 资助金额:
    $ 29.36万
  • 项目类别:
    Standard Grant
Research and Education in Financial Engineering
金融工程研究与教育
  • 批准号:
    0200429
  • 财政年份:
    2002
  • 资助金额:
    $ 29.36万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于不同经济阶级人群期望寿命差异下的养老保险制度公平性研究
  • 批准号:
    12301613
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于期望传播的低精度量化线谱估计及检测问题研究
  • 批准号:
    62371420
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
稳定列维过程非线性数学期望的有限元数值模拟
  • 批准号:
    12301517
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
期望有偏的分布式随机训练算法研究
  • 批准号:
    62376278
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
危机冲击下绩效期望、机会威胁感知与企业创新的研究
  • 批准号:
    72302213
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

The Politics of Financial Citizenship - How Do Middle Class Expectations Shape Financial Policy and Politics in Emerging Market Democracies?
金融公民政治——中产阶级的期望如何影响新兴市场民主国家的金融政策和政治?
  • 批准号:
    EP/Z000610/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29.36万
  • 项目类别:
    Research Grant
Doctoral Dissertation Research: Expectations and Noisy-Channel Processing of Relative Clauses in a verb-initial language
博士论文研究:动词开头语言中关系从句的期望和噪声通道处理
  • 批准号:
    2235106
  • 财政年份:
    2023
  • 资助金额:
    $ 29.36万
  • 项目类别:
    Standard Grant
An assessment of bereaved supporters' expectations and experiences of giving via digital memorial sites
对失去亲人的支持者通过数字纪念网站捐赠的期望和体验进行评估
  • 批准号:
    2874840
  • 财政年份:
    2023
  • 资助金额:
    $ 29.36万
  • 项目类别:
    Studentship
Parental Expectations and Educational Attainment Inequalities in Primary Education in Mozambique
莫桑比克初等教育中家长的期望和教育程度不平等
  • 批准号:
    23K18941
  • 财政年份:
    2023
  • 资助金额:
    $ 29.36万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
The Paradox of Self-Servingness and Prosociality under High Relational Mobility: The Role of Positive Reputation Expectations
高关系流动性下的自私与亲社会悖论:积极声誉期望的作用
  • 批准号:
    23H01029
  • 财政年份:
    2023
  • 资助金额:
    $ 29.36万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了