Symplectic Cohomology, log Calabi-Yau Varieties, and equivariant Lagrangian Submanifolds
辛上同调、对数 Calabi-Yau 簇和等变拉格朗日子流形
基本信息
- 批准号:1522670
- 负责人:
- 金额:$ 9.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project studies connections between different areas of geometry that are inspired by ideas from theoretical physics. An important idea in theoretical physics is the notion of a duality between physical theories. A consequence of such a duality is a deep connection between the mathematical models that describe those theories. These connections allow us to look at a mathematical question in one model from another perspective, and thus derive new results. For this project, the mathematical models come from algebraic geometry (the geometry of sets defined by polynomial equations) and representation theory (the study of symmetry) on the one hand, and symplectic geometry (the geometry of the phase spaces of classical mechanics) on the other. The duality relating them is known as homological mirror symmetry. The focus of this project is to mine this connection for new insights into structures arising on each side of the duality. One part of the project studies how symmetries arise in symplectic geometry, and how this new perspective can give insights into representation theory. Another part studies the relationship between dynamics in symplectic geometry and one of the most basic objects in algebraic geometry, namely functions. The project also supports the training of graduate and early-career mathematicians in this rapidly-developing area of research. More broadly, this project fits into the ongoing interaction between mathematics and physics that has, over the centuries, led to theoretical advances that have enabled the transformative technologies of our time.The organizing principle for this project is homological mirror symmetry for log Calabi-Yau varieties (varieties arising as the complement of an anticanonical divisor in a compactification). We consider such varieties both for the algebraic and the symplectic sides of the correspondence. On the symplectic side, the main structure we consider is symplectic cohomology, an algebraic structure that is built out of periodic orbits of certain Hamiltonian flows on a symplectic manifold (hence the connection to dynamics). The heart of the project is to relate this structure to functions and vector fields on the mirror algebraic variety. The connection to representation theory appears by considering the flag variety of a semisimple algebraic group G on the algebraic side. These are not log Calabi-Yau, but they contain open subsets which are, and part of the project is to understand better how to pass between the two situations (this involves considering a potential function on the symplectic side). The symmetries of the flag variety, namely the group G and its Lie algebra, should appear in the symplectic side as well. The natural home for the Lie algebra is symplectic cohomology, and the group action itself is manifested in the action of this Lie algebra on the Floer cohomology of equivariant Lagrangian submanifolds, which are the counterpart of equivariant vector bundles in algebraic geometry. Ultimately, one expects to obtain representations of G in the Lagrangian Floer cohomology groups. The pay-off for this effort is that these Floer cohomology groups come with a distinguished basis, and this project seeks to understand how that basis is related to the various known canonical bases in representation theory of Lusztig, Mirkovic-Vilonen, and others. In approaching these problems, the project uses ideas from the Strominger-Yau-Zaslow approach to mirror symmetry, as developed by Gross-Siebert and Gross-Hacking-Keel, as well as techniques developed by the PI in previous work on the case of log Calabi-Yau surfaces (complex dimension two).
该项目受理论物理学思想的启发,研究几何不同领域之间的联系。理论物理学的一个重要思想是物理理论之间的对偶性概念。这种二元性的结果是描述这些理论的数学模型之间存在深刻的联系。这些联系使我们能够从另一个角度看待一个模型中的数学问题,从而得出新的结果。对于这个项目,数学模型一方面来自代数几何(由多项式方程定义的集合的几何)和表示论(对称性的研究),另一方面来自辛几何(经典力学相空间的几何)。另一个。它们之间的对偶性被称为同调镜像对称。该项目的重点是挖掘这种联系,以获得对二元性每一面出现的结构的新见解。该项目的一部分研究对称性如何在辛几何中出现,以及这一新视角如何深入了解表示论。另一部分研究辛几何中的动力学与代数几何中最基本的对象之一(即函数)之间的关系。该项目还支持在这个快速发展的研究领域培训研究生和早期职业数学家。更广泛地说,这个项目符合数学和物理之间持续的相互作用,几个世纪以来,这种相互作用带来了理论进步,使我们这个时代的变革性技术成为可能。这个项目的组织原则是 log Calabi-Yau 的同调镜像对称性变体(作为紧缩中反规范除数的补集而出现的变体)。我们考虑对应关系的代数侧和辛侧的此类簇。在辛方面,我们考虑的主要结构是辛上同调,这是一种由辛流形上某些哈密顿流的周期轨道构建的代数结构(因此与动力学有关)。该项目的核心是将这种结构与镜像代数簇上的函数和向量场联系起来。通过在代数方面考虑半简单代数群 G 的标志变化,可以看出与表示论的联系。这些不是 log Calabi-Yau,但它们包含开放子集,并且该项目的一部分是更好地理解如何在两种情况之间传递(这涉及考虑辛侧的潜在函数)。标志簇的对称性,即群 G 及其李代数,也应该出现在辛侧。李代数的天然家园是辛上同调,群作用本身体现在该李代数对等变拉格朗日子流形的 Floer 上同调的作用中,这些子流形是代数几何中等变向量丛的对应物。最终,人们期望获得 G 在拉格朗日弗洛尔上同调群中的表示。这项努力的回报是,这些 Floer 上同调群具有独特的基础,该项目旨在了解该基础如何与 Lusztig、Mirkovic-Vilonen 等人的表示论中的各种已知规范基础相关。在解决这些问题时,该项目使用了由 Gross-Siebert 和 Gross-Hacking-Keel 开发的 Strominger-Yau-Zaslow 镜像对称方法的思想,以及 PI 在之前的对数案例工作中开发的技术卡拉比-丘曲面(复维二)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
James Pascaleff其他文献
Topological Fukaya category and mirror symmetry for punctured surfaces
穿刺面的拓扑深谷范畴和镜像对称
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:1.8
- 作者:
James Pascaleff;Nicolò Sibilla - 通讯作者:
Nicolò Sibilla
Floer cohomology of g -equivariant Lagrangian branes
g等变拉格朗日膜的Floer上同调
- DOI:
10.1007/bf01075621 - 发表时间:
2013 - 期刊:
- 影响因子:0.4
- 作者:
Yankı Lekili;James Pascaleff - 通讯作者:
James Pascaleff
On the symplectic cohomology of log
Calabi–Yau surfaces
关于对数的辛上同调
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:2
- 作者:
James Pascaleff - 通讯作者:
James Pascaleff
Singularity categories of normal crossings surfaces, descent, and mirror symmetry
法向交叉面、下降和镜像对称的奇点类别
- DOI:
10.1161/01.cir.95.12.2677 - 发表时间:
2022-08-08 - 期刊:
- 影响因子:0
- 作者:
James Pascaleff;Nicolò Sibilla - 通讯作者:
Nicolò Sibilla
The wall-crossing formula and Lagrangian mutations
穿墙公式和拉格朗日突变
- DOI:
10.1016/j.aim.2019.106850 - 发表时间:
2017-11-08 - 期刊:
- 影响因子:1.7
- 作者:
James Pascaleff;D. Tonkonog - 通讯作者:
D. Tonkonog
James Pascaleff的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('James Pascaleff', 18)}}的其他基金
Symplectic Cohomology, log Calabi-Yau Varieties, and equivariant Lagrangian Submanifolds
辛上同调、对数 Calabi-Yau 簇和等变拉格朗日子流形
- 批准号:
1406322 - 财政年份:2014
- 资助金额:
$ 9.57万 - 项目类别:
Standard Grant
相似国自然基金
拟椭圆上同调及其在拓扑、数学物理中的应用
- 批准号:12371068
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
3-李代数的上同调理论及其应用
- 批准号:12301034
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Keller猜想与奇点Hochschild(上)同调
- 批准号:12301055
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
带算子李共形(超)代数的上同调理论及其应用
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
环面空间的上同调与motivic稳定同伦
- 批准号:12271183
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
相似海外基金
CAREER: Elliptic cohomology and quantum field theory
职业:椭圆上同调和量子场论
- 批准号:
2340239 - 财政年份:2024
- 资助金额:
$ 9.57万 - 项目类别:
Continuing Grant
Cohomology of arithmetic groups in GL(2) over definite quaternion algebras
GL(2) 定四元数代数上算术群的上同调
- 批准号:
2884658 - 财政年份:2023
- 资助金额:
$ 9.57万 - 项目类别:
Studentship
Geometric Representations of the Elliptic Quantum Toroidal Algebras
椭圆量子环形代数的几何表示
- 批准号:
23K03029 - 财政年份:2023
- 资助金额:
$ 9.57万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
LEAPS-MPS: Quantum Field Theories and Elliptic Cohomology
LEAPS-MPS:量子场论和椭圆上同调
- 批准号:
2316646 - 财政年份:2023
- 资助金额:
$ 9.57万 - 项目类别:
Standard Grant
Dual complexes and weight filtrations: Applications to cohomology of moduli spaces and invariants of singularities
对偶复形和权重过滤:模空间上同调和奇点不变量的应用
- 批准号:
2302475 - 财政年份:2023
- 资助金额:
$ 9.57万 - 项目类别:
Continuing Grant