AitF: FULL: Collaborative Research: PEARL: Perceptual Adaptive Representation Learning in the Wild

AitF:FULL:协作研究:PEARL:野外感知自适应表示学习

基本信息

  • 批准号:
    1535797
  • 负责人:
  • 金额:
    $ 20万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-01 至 2017-04-30
  • 项目状态:
    已结题

项目摘要

Vast amounts of digitized images and videos are now commonly available, and the advent of search engines has further facilitated their access. This has created an exceptional opportunity for the application of machine learning techniques to model human visual perception. However, the data often does not conform to the core assumption of machine learning that training and test images are drawn from exactly the same distribution, or "domain." In practice, the training and test distributions are often somewhat dissimilar, and distributions may even drift with time. For example, a "dog" detector trained on Flickr may be tested on images from a wearable camera, where dogs are seen in different viewpoints and lighting conditions. The problem of compensating for these changes--the domain adaptation problem--must therefore be addressed both in theory and in practice for algorithms to be effective. This problem is not just a second-order effect and its solution does not constitute a small increase in performance. Ignoring it can lead to dramatically poor results for algorithms "in the field."This project will develop a core suite of theory and algorithms for PErceptual Adaptive Representation Learning (PEARL), which, when given a new task domain, and previous experience with related tasks and domains, will provide a learning architecture likely to achieve optimal generalization on the new task. We expect PEARL to have a significant impact on the research community by providing a much-needed theoretical and computational framework that takes steps toward unifying the subfields of domain adaptation theory and domain adaptation practice. Our theoretical and practical advancements will impact many application areas by allowing the use of pre-trained perceptual models (visual and otherwise) in new situations and across space and time. For example, in mobile technology and robotics, PEARL will help personal assistants and robots better adapt their perceptual interfaces to individual users and particular situated environments. At the core of this project are three main research thrusts: 1) making theoretical advances for domain adaptation by developing generalized discrepancy distance minimization; 2) using the theoretical guarantees of generalized discrepancy distance to develop algorithms for key adaptation scenarios of deep perceptual representation learning, domain adaptation with active learning, and time-dependent adaptation; 3) advancing the theory and developing algorithms for the multiple-source adaptation scenario. In addition to our core aims, we plan to implement our algorithms within a scalable open-source framework, and evaluate our algorithms on large-scale visual data sets.
现在通常可以使用大量数字化的图像和视频,搜索引擎的出现进一步促进了它们的访问。这为应用机器学习技术来建模人类视觉感知创造了出色的机会。但是,数据通常不符合机器学习的核心假设,即训练和测试图像是从完全相同的分布或“域”中得出的。在实践中,培训和测试分布通常有些不同,并且分布甚至可能随着时间的流逝而漂移。例如,可以在可穿戴相机的图像上测试接受过Flickr的“狗”检测器,在该图像中,在不同的观点和照明条件下可以看到狗。弥补这些变化的问题 - 域适应问题 - 因此,在理论和实践中都可以解决算法有效的问题。这个问题不仅是二阶效应,其解决方案并不构成少量的性能。 忽略它可能会导致算法上的差异。我们希望珍珠通过提供急需的理论和计算框架对研究界产生重大影响,该框架采取了统一域名适应理论和领域适应实践的子场的步骤。我们的理论和实践进步将通过在新情况以及跨时时间和时间和时间和时间和时间和时间上使用预训练的感知模型(视觉和其他方式)来影响许多应用领域。例如,在移动技术和机器人技术中,Pearl将帮助个人助理和机器人更好地调整其感知界面,以适应个人用户和特定位置环境。 该项目的核心是三个主要的研究作用:1)通过开发一般的差异距离最小化来实现领域适应的理论进步; 2)使用广义差异距离的理论保证来开发算法,以进行深度感知表示学习的关键适应方案,主动学习的域适应和时间依赖性适应; 3)推进理论并为多种源适应方案开发算法。除了我们的核心目标外,我们还计划在可扩展的开源框架内实现算法,并在大规模的视觉数据集上评估我们的算法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kate Saenko其他文献

Temporal Relevance Analysis for Video Action Models
视频动作模型的时间相关性分析
  • DOI:
    10.48550/arxiv.2204.11929
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Quanfu Fan;Donghyun Kim;Chun;S. Sclaroff;Kate Saenko;Sarah Adel Bargal
  • 通讯作者:
    Sarah Adel Bargal
Unsupervised Video-to-Video Translation
无监督视频到视频翻译
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. Bashkirova;Ben Usman;Kate Saenko
  • 通讯作者:
    Kate Saenko
Vision and Language Integration Meets Multimedia Fusion
视觉和语言集成遇见多媒体融合
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Moens;Katerina Pastra;Kate Saenko;T. Tuytelaars
  • 通讯作者:
    T. Tuytelaars
Modeling the Uncertainty in Inverse Radiometric Calibration
逆辐射校准中的不确定性建模
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ying Xiong;Kate Saenko;Todd E. Zickler;Trevor Darrell
  • 通讯作者:
    Trevor Darrell
Deconstructing the Deformable Parts Model : Do More with Less
解构可变形零件模型:事半功倍
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Brigit Schroeder;Baochen Sun;Kate Saenko;Karim Ali
  • 通讯作者:
    Karim Ali

Kate Saenko的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kate Saenko', 18)}}的其他基金

Collaborative Research: CCRI:NEW: Research Infrastructure for Real-Time Computer Vision and Decision Making via Mobile Robots
合作研究:CCRI:新:通过移动机器人进行实时计算机视觉和决策的研究基础设施
  • 批准号:
    2120322
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
FW-HTF-RL: Collaborative Research: Shared Autonomy for the Dull, Dirty, and Dangerous: Exploring Division of Labor for Humans and Robots to Transform the Recycling Sorting Industry
FW-HTF-RL:协作研究:沉闷、肮脏和危险的共享自治:探索人类和机器人的分工以改变回收分类行业
  • 批准号:
    1928477
  • 财政年份:
    2019
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
S&AS: FND: COLLAB: Learning Manipulation Skills Using Deep Reinforcement Learning with Domain Transfer
S
  • 批准号:
    1724237
  • 财政年份:
    2017
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
CI-NEW: Collaborative Research: COVE-Computer Vision Exchange for Data, Annotations and Tools
CI-NEW:协作研究:COVE-数据、注释和工具的计算机视觉交换
  • 批准号:
    1629700
  • 财政年份:
    2016
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
EAGER: Quantifying and Reducing Data Bias in Object Detection Using Physics-based Image Synthesis
EAGER:使用基于物理的图像合成来量化和减少物体检测中的数据偏差
  • 批准号:
    1738063
  • 财政年份:
    2016
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
AitF: FULL: Collaborative Research: PEARL: Perceptual Adaptive Representation Learning in the Wild
AitF:FULL:协作研究:PEARL:野外感知自适应表示学习
  • 批准号:
    1723379
  • 财政年份:
    2016
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
EAGER: Quantifying and Reducing Data Bias in Object Detection Using Physics-based Image Synthesis
EAGER:使用基于物理的图像合成来量化和减少物体检测中的数据偏差
  • 批准号:
    1451244
  • 财政年份:
    2014
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant

相似国自然基金

近代东北南满铁路沿线工业城市的建设和技术传播
  • 批准号:
    52378030
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
薤白基于治疗“脘腹痞满胀痛”传统功效的抗胃癌药效物质基础与作用机制研究
  • 批准号:
    82374014
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于体内代谢产物“谱-量-效”3D分析的厚朴“下气除满”药效物质研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于体内代谢产物“谱-量-效”3D分析的厚朴“下气除满”药效物质研究
  • 批准号:
    82204619
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
基于GPR30对铁蓄积的调控作用研究蒙药那仁满都拉抗骨质疏松的效应及机制
  • 批准号:
    82260981
  • 批准年份:
    2022
  • 资助金额:
    33.00 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

AitF: FULL: Collaborative Research: PEARL: Perceptual Adaptive Representation Learning in the Wild
AitF:FULL:协作研究:PEARL:野外感知自适应表示学习
  • 批准号:
    1723379
  • 财政年份:
    2016
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
AitF: FULL: Collaborative Research: Better Hashing for Applications: From Nuts & Bolts to Asymptotics
AitF:完整:协作研究:更好的应用程序哈希:来自坚果
  • 批准号:
    1535795
  • 财政年份:
    2015
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
AitF: Full: Collaborative Research: Graph-theoretic algorithms to improve phylogenomic analyses
AitF:完整:协作研究:改进系统发育分析的图论算法
  • 批准号:
    1535977
  • 财政年份:
    2015
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
AitF: FULL: Collaborative Research: PEARL: Perceptual Adaptive Representation Learning in the Wild
AitF:FULL:协作研究:PEARL:野外感知自适应表示学习
  • 批准号:
    1536003
  • 财政年份:
    2015
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
AitF: Full: Collaborative Research: Modeling and Understanding Complex Influence in Social Networks
AitF:完整:协作研究:建模和理解社交网络中的复杂影响
  • 批准号:
    1535912
  • 财政年份:
    2015
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了