DMREF: Collaborative Research: Development of Design Rules for High Hydroxide Transport in Polymer Architectures

DMREF:协作研究:聚合物结构中高氢氧化物传输设计规则的开发

基本信息

  • 批准号:
    1534374
  • 负责人:
  • 金额:
    $ 35万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-01 至 2018-08-31
  • 项目状态:
    已结题

项目摘要

In this project funded by the Designing Materials to Revolutionize and Engineer our Future (DMREF) Program of the Chemistry Division, Professor Mark Tuckerman at New York University, Professor Chulsung Bae at Rensselaer Polytechnic Institute, Professor Michael Hickner of the Pennsylvania State University, and Professor Stephen Paddison of the University of Tennessee are designing, synthesizing, and testing new materials for use in alkaline fuel cells and discovering a set of rules for best practices in the development of future materials for fuel cell applications. As the United States seeks to enhance its energy security through identification and development of clean energy sources a range of technologies need to be leveraged in order to secure a sustainable energy supply. Electrochemical devices are an important part of this mix of technologies, and among these, fuel cells constitute some of the cleanest and most sustainable technologies. Several key hurdles to harnessing the potential of fuel cells (as well as various other electrochemical technologies) remain to be surmounted. The team of investigators are focusing on anion exchange membrane fuel cells that have advantages over other types of fuel cells in not requiring precious metals and being operable with a variety of fuels at low temperature. The project is employing a cohesive strategy involving mathematical and computer modeling of specific materials components that may, in turn, guide the synthesis of new materials, the characterization and testing of these materials in actual fuel cells, and the determination of optimal design principles to govern future materials engineering in this area. The project is also providing education and training for graduate and post-graduate researchers in both theoretical and experimental aspects of materials science and engineering, thus ensuring the competence and creativity of the next generation of STEM researchers. The understanding and design of cost-effective and reliable polymer architectures for use as ion-conducting membranes is an important challenge facing emerging electrochemical device technologies. Currently available proton exchange membranes are problematic due to high cost, environmental concerns of fluoroplymers, and often poor performance under nonideal conditions. Additional challenges in proton exchange membranes fuel cell applications include difficult water management due to electro-osmosis, high fuel crossover, and the requirement of expensive platinum catalysts. Fuel cells based on anion exchange membranes have the potential to alleviate most of these problems. However, little systematic knowledge of how best to design these materials exists at present despite the fact that liquid-electrolyte alkaline fuel cells were among the first fuel cells to be developed. The team of researchers is applying an integrated, iterative theoretical-experimental approach towards the targeted syntheses of polymers, the first-principles computer simulations of specific polymer chemistries, the mathematical and experimental characterization of structures/morphologies, and the measurement and computational modeling of long-range hydroxide ion transport. Through this cohesive effort, the team of investigators is aiming to advance fundamental science and engineering knowledge in the area of fuel cells membranes and to deduce a set of fundamental design principles for anion exchange membranes that accelerate the time between concept and production of practically useful materials.
在由设计材料资助的该项目中,革命和设计化学部的未来计划(DMREF)计划,纽约大学的马克·塔克曼教授,伦斯勒理工学院教授乔尔斯·贝(Chulsung Bae)教授,宾夕法尼亚州立大学的迈克尔·希克纳(Michael Hickner)和教授田纳西大学的斯蒂芬·帕迪森(Stephen Paddison)正在设计,合成和测试用于碱性燃料电池中的新材料,并发现了一系列最佳实践规则,以开发未来的燃料电池应用材料。 由于美国试图通过识别和开发清洁能源来增强其能源安全,需要利用一系列技术,以确保可持续的能源供应。 电化学设备是这种技术组合的重要组成部分,其中燃料电池构成了一些最干净,最可持续的技术。利用燃料电池的潜力(以及其他各种电化学技术)的几个关键障碍仍有待覆盖。 研究人员团队专注于与其他类型的燃料电池相比,在不需要贵金属并在低温下使用各种燃料可运行的阴离子交换膜燃料电池。该项目正在采用一种具有凝聚力的策略,涉及特定材料组件的数学和计算机建模,反过来可能指导新材料的综合,在实际燃料电池中对这些材料的表征和测试以及确定最佳设计原理以控制该领域的未来材料工程。该项目还为材料科学和工程学的理论和实验方面的研究生和研究生研究人员提供教育和培训,从而确保了下一代STEM研究人员的能力和创造力。用作离子传导膜的具有成本效益和可靠的聚合物架构的理解和设计是新兴的电化学设备技术面临的重要挑战。目前,由于高成本,荧光液的环境问题以及在非理想条件下的性能往往较差,目前可用的质子交换膜是有问题的。质子交换膜燃料电池应用中的其他挑战包括由于电渗透,高燃料交叉以及昂贵的铂催化剂的需求而引起的水管理困难。基于阴离子交换膜的燃料电池有可能减轻这些问题的大多数。然而,尽管液体 - 电解质碱性燃料电池是最早开发的燃料电池之一,但目前对如何设计这些材料的最佳设计知识很少。研究人员团队正在将综合的,迭代的理论实验方法应用于聚合物的靶向合成,第一原理的计算机模拟特定聚合物化学的计算机模拟,结构/形态的数学和实验表征以及长期的测量和计算模型 - 晶氢氧化离子运输。 通过这项凝聚力的努力,研究人员的团队旨在促进燃料电池膜领域的基本科学和工程知识,并针对阴离子交换膜的一系列基本设计原理,以加速概念与实际有用材料之间的时间之间的时间。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mark Tuckerman其他文献

Mark Tuckerman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mark Tuckerman', 18)}}的其他基金

DMREF: Accelerated discovery of metastable but persistent contact insecticide crystal polymorphs for enhanced activity and sustainability
DMREF:加速发现亚稳态但持久的接触性杀虫剂晶体多晶型物,以增强活性和可持续性
  • 批准号:
    2118890
  • 财政年份:
    2022
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Development of rare-event sampling techniques for predicting structures and free energies of crystal polymorphs and oligopeptides
开发罕见事件采样技术来预测晶体多晶型物和寡肽的结构和自由能
  • 批准号:
    1565980
  • 财政年份:
    2016
  • 资助金额:
    $ 35万
  • 项目类别:
    Continuing Grant
Development of computational techniques for predicting the free energetics of crystalline polymorphs and complex molecules
开发用于预测晶体多晶型物和复杂分子的自由能学的计算技术
  • 批准号:
    1301314
  • 财政年份:
    2013
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Collaborative Research: SI2-CHE: Development and Deployment of Chemical Software for Advanced Potential Energy Surfaces
合作研究:SI2-CHE:先进势能表面化学软件的开发和部署
  • 批准号:
    1265889
  • 财政年份:
    2013
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Development and application of novel methods for enhanced conformational sampling, free energy prediction, and hybrid QM/MM calculations
增强构象采样、自由能预测和混合 QM/MM 计算新方法的开发和应用
  • 批准号:
    1012545
  • 财政年份:
    2010
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Novel methodologies for conformational sampling and QM/MM simulations in complex systems
复杂系统中构象采样和 QM/MM 模拟的新方法
  • 批准号:
    0704036
  • 财政年份:
    2007
  • 资助金额:
    $ 35万
  • 项目类别:
    Continuing Grant
Acquisition of Large-scale Parallel Computational Resources for Biological and Materials Modeling
获取用于生物和材料建模的大规模并行计算资源
  • 批准号:
    0420870
  • 财政年份:
    2004
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
New conformational sampling and large-scale electronic structure techniques: applications to polypeptide structure, proton transport, and dynamics of silicate melts
新构象采样和大规模电子结构技术:在多肽结构、质子传输和硅酸盐熔体动力学中的应用
  • 批准号:
    0310107
  • 财政年份:
    2003
  • 资助金额:
    $ 35万
  • 项目类别:
    Continuing Grant
Collaborative Research: ITR/AP: Novel Scalable Simulation Techniques for Chemistry, Materials Science and Biology
合作研究:ITR/AP:化学、材料科学和生物学的新型可扩展模拟技术
  • 批准号:
    0121375
  • 财政年份:
    2001
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant

相似国自然基金

基于交易双方异质性的工程项目组织间协作动态耦合研究
  • 批准号:
    72301024
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向5G超高清移动视频传输的协作NOMA系统可靠性研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向协作感知车联网的信息分发时效性保证关键技术研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
数据物理驱动的车间制造服务协作可靠性机理与优化方法研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
医保基金战略性购买促进远程医疗协作网价值共创的制度创新研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    45 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
  • 批准号:
    2413579
  • 财政年份:
    2024
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
  • 批准号:
    2409552
  • 财政年份:
    2024
  • 资助金额:
    $ 35万
  • 项目类别:
    Continuing Grant
Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys
合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计
  • 批准号:
    2411603
  • 财政年份:
    2024
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Predicting Molecular Interactions to Stabilize Viral Therapies
合作研究:DMREF:预测分子相互作用以稳定病毒疗法
  • 批准号:
    2325392
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Topologically Designed and Resilient Ultrahigh Temperature Ceramics
合作研究:DMREF:拓扑设计和弹性超高温陶瓷
  • 批准号:
    2323458
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了