Translocation, biological fate, stability, and effective dose of engineered nanomaterials for nanosafety studies
用于纳米安全研究的工程纳米材料的易位、生物命运、稳定性和有效剂量
基本信息
- 批准号:1530790
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-01-01 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1530790(Heinz)This proposal deals with in vitro and in vivo fate studies of engineered nanomaterials (NMs). ZnO, Au and PLGA NPs and Graphene will be produced with controlled shape, size and surface properties. The intracellular localization, dynamics and state of aggregation of the NMs will be first studied in vitro by a combination of biophysical techniques. Ion Beam Microscopy will be applied to determine intracellular dose of ZnO and Au NPs. Toxicological studies will be performed and related to the intracelular dose. The stability of the bio corona and conformational state of proteins in the corona will be studied intracelularly. NMs will be further radiolabelled for in vivo imaging and strategies for dual radiolabelling will be developed. Positron Emission Tomography and Single Photon Emission Computed Tomography will be applied to study the biodistribution and fate of radiolabelled NMs in small rodents following different administration routes. By dual radio labelling the in vivo stability of NMs will be investigated.The synthesis of various nanomaterials (NM) will be carried out, including metal and metal oxide nanoparticles, polymeric PLGA based nanoparticles, as well as graphene and graphene oxide nanomaterials. The materials will be surface-functionalized in different ways, and the introduction of dual radiolabels in the core and in the corona will be explored to be able to track the location of the NM during in vitro and in vivo studies by collaborators. Characterization of the NMs involves zeta potential measurements, DLS, NTA, ATR-FTIR, TEM, and micro scanning transmission ion microscopy. The specific interactions between the nanoparticles and their corona will also be explored by molecular simulation, which allows to track the effects of surface chemistry on ligand packing, binding strength, and agglomeration of the nanomaterials. Further tests by steered molecular dynamics simulation aim at understanding the translocation process through cell membranes and probing the stability of the nanoparticle corona. Specific interactions with selected peptides and proteins will be explored in models to rationalize accumulation in specific organs and tissues as experimental information becomes available.A combination of all-atom and coarse-grain simulations will be employed to explore length scales from nanometers to micrometers.The knowledge generated in this project will be essential to understand the behavior of nanomaterials at cellular and organism levels with the ultimate goal to minimize toxicity. This objective is of paramount importance for future developments in cosmetics, medical and pharmaceutical products, as well as for new structural materials enhanced by nanoscale materials to which humans are exposed. The synthesis, modeling, and testing of various systems also helps uncover ways in which nanomaterials may be designed to minimize toxicity. Nanomaterial stability studies will also tackle issues such as the stability of the coating around the core, the stability of the core itself as well as the degree of aggregation of the nanomaterials. In the project we propose a complex and unprecedented combination of labelling strategies, which will allow the PI to address these issues through highly sensitive, non-invasive imaging techniques such as PET or SPECT. The stability of surface coating can explain why the same nanomaterial core can have different toxicity when functionalized with different coating or even when the same coating is linked to the nanomaterial surface in different ways. Coating and nanomaterial stability in relation with their distribution can explain specific toxicological responses as well as provide understanding on the time frame of the toxicological response. The nanomaterial stability can become a novel toxicological end point and be fundamental in risk assessment. Ultimately, the results will contribute to a quantitative evaluation of risks associated with the materials investigated. The proposed effort will also include the training of PhD students and outreach activities for High School students through Engineering Career Days and hands-on research experiences in university laboratories
1530790(亨氏)该提案涉及工程纳米材料(NMS)的体外和体内命运研究。 ZnO,AU和PLGA NP和石墨烯将具有控制形状,大小和表面特性。 NMS的细胞内定位,动力学和总体聚集状态将首先通过生物物理技术的结合在体外研究。离子束显微镜将用于确定ZnO和Au NP的细胞内剂量。将进行毒理学研究并与细胞内剂量有关。将对电晕中生物电晕和蛋白质的构象状态的稳定性进行研究。 NMS将进一步进行放射性标记进行体内成像,并将开发双重放射性标记的策略。正电子发射断层扫描和单个光子发射计算机断层扫描将用于研究不同给药途径的小啮齿动物中放射性标记的NMS的生物分布和命运。通过双重无线电标记NMS的体内稳定性。这些材料将以不同的方式进行表面功能化,并且将探索核心和电晕中的双辐射标记,以便能够在体外和体内研究期间跟踪NM的位置。 NMS的表征涉及ZETA电位测量,DLS,NTA,ATR-FTIR,TEM和微扫描透射离子显微镜。分子模拟也将探索纳米颗粒及其电晕之间的特定相互作用,该模拟允许跟踪表面化学对纳米材料的配体堆积,结合强度和团聚的影响。通过转向的分子动力学模拟进行的进一步测试旨在通过细胞膜了解易位过程,并探测纳米颗粒电晕的稳定性。将在模型中探索与选定肽和蛋白质的特定相互作用,以合理化特定器官和组织中的积累。随着实验信息的可用,将采用全原子和粗粒型模拟的组合来探索从纳米仪到微米的长度尺度。该项目在该项目中的知识将是纳米级和机器人级别的行为至关重要的。对于化妆品,医疗和药品的未来发展以及通过人类暴露的纳米级材料增强的新结构材料而言,这一目标至关重要。各种系统的合成,建模和测试还有助于发现纳米材料可以设计以最大程度地毒性的方式。纳米材料稳定性研究还将解决诸如核心周围涂层的稳定性,核心本身的稳定性以及纳米材料的聚集程度。在项目中,我们提出了标签策略的复杂且前所未有的组合,这将使PI能够通过高度敏感的,非侵入性的成像技术(例如PET或SPECT)来解决这些问题。表面涂层的稳定性可以解释为什么在用不同的涂层功能化或以不同方式将相同的涂层功能化时,相同的纳米材料核可以具有不同的毒性。与其分布相关的涂层和纳米材料稳定性可以解释特定的毒理学反应,并提供对毒理学反应时间范围的理解。纳米材料稳定性可以成为一种新颖的毒理学终点,并且在风险评估中是基础。最终,结果将有助于对所研究材料相关的风险进行定量评估。拟议的努力还将包括通过工程职业时代和大学实验室的动手研究经验对高中生的博士培训和外展活动的培训
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hendrik Heinz其他文献
En route to multi-model scheme for clinker comminution with chemical grinding aids
正在采用化学助磨剂粉碎熟料的多模型方案
- DOI:
10.1179/1743676115y.0000000023 - 发表时间:
2015 - 期刊:
- 影响因子:2.2
- 作者:
Ratan K Mishra;D. Geissbuhler;Humberto A. Carmona;F. Wittel;M. Sawley;Martin Weibel;Emmanuel Gallucci;Hans J. Herrmann;Hendrik Heinz;R. Flatt - 通讯作者:
R. Flatt
Atomic-scale identi�cation of the active sites of nanocatalysts
纳米催化剂活性位点的原子尺度鉴定
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Yao Yang;Jihan Zhou;Zipeng Zhao;Geng Sun;S. Moniri;Colin Ophus;Yongsoo Yang;Ziyang Wei;Yakun Yuan;Cheng Zhu;Yang Liu;Qiang Sun;Qingying Jia;Hendrik Heinz;J. Ciston;P. Ercius;P. Sautet;Yu Huang;J. Miao - 通讯作者:
J. Miao
Calculation of local and average pressure tensors in molecular simulations
- DOI:
10.1080/08927020701308828 - 发表时间:
2007-08 - 期刊:
- 影响因子:2.1
- 作者:
Hendrik Heinz - 通讯作者:
Hendrik Heinz
Understanding hydration reactions, mechanical properties, thermal expansion, and organic interfacial interactions of calcium sulfate hydrates from the atomic scale
- DOI:
10.1016/j.cemconres.2024.107740 - 发表时间:
2025-03-01 - 期刊:
- 影响因子:
- 作者:
Ratan K. Mishra;Samir Darouich;Pieter J. in 't Veld;Robert J. Flatt;Hendrik Heinz - 通讯作者:
Hendrik Heinz
Hendrik Heinz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hendrik Heinz', 18)}}的其他基金
Collaborative Research: DMREF: Data-Driven Prediction of Hybrid Organic-Inorganic Structures
合作研究:DMREF:混合有机-无机结构的数据驱动预测
- 批准号:
2323546 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Bioinspired Structural Composites: Advances in Experiments, Simulations, and AI Based Design
仿生结构复合材料:实验、模拟和基于人工智能的设计的进展
- 批准号:
2214718 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: Frameworks: Cyberloop for Accelerated Bionanomaterials Design
合作研究:框架:加速生物纳米材料设计的 Cyberloop
- 批准号:
1931587 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Tailored Interphases for High-Strength and Functional Composites - Advances in Experiments, Simulations and AI-Based Designs
高强度和功能复合材料的定制界面——实验、模拟和基于人工智能的设计的进展
- 批准号:
1941104 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: I-AIM: Interpretable Augmented Intelligence for Multiscale Material Discovery
合作研究:I-AIM:用于多尺度材料发现的可解释增强智能
- 批准号:
1940335 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
DMREF/Collaborative Research: Design and Testing of Nanoalloy Catalysts in 3D Atomic Resolution
DMREF/合作研究:3D 原子分辨率纳米合金催化剂的设计和测试
- 批准号:
1623947 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
DMREF/Collaborative Research: Design and Testing of Nanoalloy Catalysts in 3D Atomic Resolution
DMREF/合作研究:3D 原子分辨率纳米合金催化剂的设计和测试
- 批准号:
1437355 - 财政年份:2014
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CAREER: Unraveling Molecular Mechanisms of Biomineralization
职业:揭示生物矿化的分子机制
- 批准号:
0955071 - 财政年份:2010
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Travel Support for International Speakers for a Symposium on Simulation of Hybrid Interfaces and Polymeric Materials at the 240th ACS National Meeting in Boston, MA
为参加在马萨诸塞州波士顿举行的第 240 届 ACS 全国会议混合接口和聚合物材料仿真研讨会的国际演讲者提供差旅支持
- 批准号:
1038782 - 财政年份:2010
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似国自然基金
INTB1/RHOA/LATS1介导的干细胞分化命运同生物型物理微环境互作的机制研究
- 批准号:82301031
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
生物活性材料通过miR-29c-3p/TET调控干细胞命运决定促进牙髓再生的研究
- 批准号:82370946
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
成熟RNA核降解的命运决定机制及生物学功能研究
- 批准号:32230022
- 批准年份:2022
- 资助金额:269 万元
- 项目类别:重点项目
以斑马鱼为模式生物探究消化系统早期发育中的细胞命运调控机制
- 批准号:31900579
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
干扰素调节因子2结合蛋白2(IRF2BP2)在斑马鱼胚胎髓系发育中生物学作用的研究
- 批准号:31871471
- 批准年份:2018
- 资助金额:59.0 万元
- 项目类别:面上项目
相似海外基金
Single cell, genome wide dissection of dynamic transcription factor regulation
单细胞、全基因组动态转录因子调控的剖析
- 批准号:
10538121 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Elucidating the role of pioneer factors in RPC developmental competence
阐明先驱因素在 RPC 发展能力中的作用
- 批准号:
10477965 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Hippo Signaling in Regeneration of the Retinal Pigment Epithelium
视网膜色素上皮再生中的河马信号传导
- 批准号:
10596550 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Hippo Signaling in Regeneration of the Retinal Pigment Epithelium
视网膜色素上皮再生中的河马信号传导
- 批准号:
10385720 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Elucidating the role of pioneer factors in RPC developmental competence
阐明先驱因素在 RPC 发展能力中的作用
- 批准号:
10313677 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别: