SHF: Large: Collaborative Research: Molecular computing for the real world

SHF:大型:协作研究:现实世界的分子计算

基本信息

  • 批准号:
    1518723
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-01 至 2018-05-31
  • 项目状态:
    已结题

项目摘要

Molecular computing is a promising computational paradigm in which computational functions are evaluated at the nanoscale, with potential applications in smart molecular diagnostics and therapeutics. A molecular computing system comprises biomolecules, such as DNA strands, which have been designed to detect certain input molecules by binding to them and subsequently to undergo programmed sequences of chemical reactions that serve to compute a logical function based on the observed pattern of input molecules. For example, a molecular system that requires both of its two inputs to be present simultaneously in order to generate an output signal would be referred to as computing a logical "AND" function on the two inputs. However, despite recent advances in the field, prospects for direct application of these techniques to solve real-world problems are limited by the lack of robust interfaces between molecular computers and biological and chemical systems. This project will address this limitation by targeting two specific application domains: wide-spectrum chemical sensing and cell surface analysis using molecular logic cascades. The state of the art in molecular computer design, modeling, and implementation will be advanced by an interdisciplinary combination of research by computer scientists, bioengineers, chemists, and computer engineers, and successful completion of the proposed activity will be a significant step towards routine deployment of molecular computers to address real-world problems in chemical and biological sensing.In this project, molecular circuit architectures that process sensor inputs from chemical sensors and cell-surface analysis reactions will be designed, modeled, and implemented in the laboratory. This will require specific advances in the isolation of aptamers (DNA sequences that exhibit particular binding affinity to one or more target non-nucleic acid molecules) and in their integration into molecular computing systems. In this context, the aptamer will serve as an interface that allows a rationally-designed DNA-based molecular computing system to use small molecules as input signals. Furthermore, computational modeling and simulation will be used to predict and optimize interactions between DNA aptamers and a range of binding targets, and to choose optimal aptamer combinations to produce cross-reactive multi-sensor arrays capable of discriminating between target ligands by effectively projecting the signal into a multi-dimensional aptamer response space. Furthermore, advanced molecular circuit architectures capable of adaptive, bio-inspired behavior, such as dynamic learning and adaptation, will be designed, with a view to future experimental implementations of these features in large-scale molecular computers. This will include research on highly recurrent, bio-inspired information processing networks to extract meaningful responses from potentially non-specific aptamer-based sensors.
分子计算是一种有前途的计算范式,其中计算功能在纳米尺度上进行评估,在智能分子诊断和治疗方面具有潜在的应用。分子计算系统由生物分子(例如 DNA 链)组成,其设计用于通过与某些输入分子结合来检测它们,然后进行化学反应的编程序列,用于根据观察到的输入分子模式计算逻辑函数。例如,需要两个输入同时存在才能生成输出信号的分子系统将被称为在两个输入上计算逻辑“AND”函数。然而,尽管该领域最近取得了进展,但由于分子计算机与生物和化学系统之间缺乏稳健的接口,直接应用这些技术解决现实世界问题的前景受到限制。该项目将通过针对两个特定应用领域来解决这一限制:广谱化学传感和使用分子逻辑级联的细胞表面分析。分子计算机设计、建模和实施的最先进技术将通过计算机科学家、生物工程师、化学家和计算机工程师的跨学科研究组合来推进,成功完成拟议的活动将是朝着常规部署迈出的重要一步分子计算机来解决化学和生物传感中的现实问题。在该项目中,将在实验室中设计、建模和实现处理化学传感器和细胞表面分析反应的传感器输入的分子电路架构。这需要在适配体(对一种或多种目标非核酸分子表现出特定结合亲和力的DNA序列)分离以及将其集成到分子计算系统方面取得具体进展。在这种情况下,适体将作为一个接口,允许合理设计的基于DNA的分子计算系统使用小分子作为输入信号。此外,计算建模和模拟将用于预测和优化DNA适体与一系列结合靶点之间的相互作用,并选择最佳的适体组合来产生交叉反应多传感器阵列,能够通过有效投射信号来区分靶配体进入多维适体响应空间。此外,还将设计能够实现自适应、仿生行为(例如动态学习和适应)的先进分子电路架构,以期未来在大规模分子计算机中实验实现这些功能。这将包括对高度重复的、受生物启发的信息处理网络的研究,以从潜在的非特异性适体传感器中提取有意义的响应。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sergei Rudchenko其他文献

Sergei Rudchenko的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sergei Rudchenko', 18)}}的其他基金

SHF: Large: Collaborative Research: Molecular computing for the real world
SHF:大型:协作研究:现实世界的分子计算
  • 批准号:
    1832985
  • 财政年份:
    2018
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
SHF: Large: Collaborative Research: Molecular computing for the real world
SHF:大型:协作研究:现实世界的分子计算
  • 批准号:
    1832985
  • 财政年份:
    2018
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于可变惯容调谐质量阻尼器的大跨度桥梁多模态涡振半主动控制方法研究
  • 批准号:
    52378147
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
面向要素流动的城市群居民活动空间边界识别、机理与测度研究:以粤港澳大湾区为例
  • 批准号:
    42371202
  • 批准年份:
    2023
  • 资助金额:
    46 万元
  • 项目类别:
    面上项目
苯并环辛烷类大环对质膜外表面磷脂酰丝氨酸的选择性识别及其体外的应用研究
  • 批准号:
    22301046
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
区域出口产品升级的时空格局及机制研究——以粤港澳大湾区为例
  • 批准号:
    42301182
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
高光产额、快衰减、大尺寸Cs3Cu2I5:Mn晶体的水溶液法生长研究
  • 批准号:
    62305193
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
  • 批准号:
    2402804
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
  • 批准号:
    2402806
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
  • 批准号:
    2402805
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
SHF: Large: Collaborative Research: Molecular computing for the real world
SHF:大型:协作研究:现实世界的分子计算
  • 批准号:
    1832985
  • 财政年份:
    2018
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
SHF: Large: Collaborative Research: Molecular computing for the real world
SHF:大型:协作研究:现实世界的分子计算
  • 批准号:
    1832985
  • 财政年份:
    2018
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了