Advanced Eigensolvers for Science and Engineering Applications

用于科学和工程应用的高级特征求解器

基本信息

  • 批准号:
    1522697
  • 负责人:
  • 金额:
    $ 24.96万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-01 至 2019-08-31
  • 项目状态:
    已结题

项目摘要

Large-scale eigenvalue computation is a long-standing problem in computational mathematics and computational science and engineering. It is frequently encountered as a critical kernel in simulations and data analysis. Significant progress has been made both in general-purpose eigensolvers and also in specialized eigensolvers that exploit underlying particular mathematical properties and data structure. However, new needs and challenges continue to emerge from science and engineering applications. This project involves the development of advanced mathematical analysis and robust, efficient algorithms for two emerging classes of eigenvalue problems: sparse plus low rank linear eigenvalue problems and eigenvalue problems with eigenvalue nonlinearity. In addition, this project has broader impacts in training graduate students in interdisciplinary research. While much of the work involves significant technical expertise, other areas can be successfully understood and tackled by advanced undergraduates.The computational stability, efficiency and reliability of the new solvers for the two classes of eigenvalue problems will be greatly enhanced by skillful exploitation of underlying mathematical properties and matrix structure. In particular, for the eigenvalue problems with eigenvalue nonlinearity, new solver will combine rational approximations of nonlinearity for high accuracy, trimmed linearizations for low dimensionality, and compact representations of the projection subspace bases for memory-saving and communication efficiency. The outcomes of this project will be the publication of new theory and algorithms and open-source software.
大规模特征值计算是计算数学和计算科学与工程中长期存在的问题。它作为模拟和数据分析中的关键内核经常遇到。通用特征求解器和利用底层特定数学属性和数据结构的专用特征求解器都取得了重大进展。然而,科学和工程应用不断出现新的需求和挑战。该项目涉及针对两类新兴特征值问题开发高级数学分析和稳健、高效的算法:稀疏加低秩线性特征值问题和具有特征值非线性的特征值问题。此外,该项目在培养研究生跨学科研究方面具有更广泛的影响。虽然大部分工作涉及重要的技术专业知识,但其他领域可以由高年级本科生成功理解和解决。通过熟练地利用基础数学知识,两类特征值问题的新求解器的计算稳定性、效率和可靠性将得到极大提高。性质和矩阵结构。特别是,对于具有特征值非线性的特征值问题,新的求解器将结合非线性有理近似以实现高精度、修剪线性化以实现低维,以及投影子空间基的紧凑表示以节省内存和提高通信效率。该项目的成果将是新理论和算法以及开源软件的发布。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zhaojun Bai其他文献

Advancing Large Scale Many-Body QMC Simulations on GPU Accelerated Multicore Systems
推进 GPU 加速多核系统上的大规模多体 QMC 仿真
Hatano-Nelson model with a periodic potential
具有周期性势的 Hatano-Nelson 模型
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Frederic Hebert;M. Schram;R. Scalettar;Wenbin Chen;Zhaojun Bai
  • 通讯作者:
    Zhaojun Bai
A Self-consistent-field Iteration for Orthogonal CCA
正交CCA的自洽场迭代
Physics-Informed Neural Networks-Based Salinity Modeling in the Sacramento–San Joaquin Delta of California
加利福尼亚州萨克拉门托-圣华金三角洲基于物理的神经网络盐度建模
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Dong Min Roh;M. He;Zhaojun Bai;Prabhjot Sandhu;F. Chung;Zhi Ding;Siyu Qi;Yu Zhou;Raymond Hoang;P. Namadi;B. Tom;Jamie Anderson
  • 通讯作者:
    Jamie Anderson
On swapping diagonal blocks in real Schur form
实 Schur 形式中交换对角线块

Zhaojun Bai的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zhaojun Bai', 18)}}的其他基金

Improving Numerical Methods for Large Eigenvalue Problems
改进大型特征值问题的数值方法
  • 批准号:
    1913364
  • 财政年份:
    2019
  • 资助金额:
    $ 24.96万
  • 项目类别:
    Standard Grant
AF: Small: Collaborative Research: Mathematical Theory and Fast Algorithms for Rayleigh Quotient-type Optimizations
AF:小型:协作研究:瑞利商型优化的数学理论和快速算法
  • 批准号:
    1527091
  • 财政年份:
    2015
  • 资助金额:
    $ 24.96万
  • 项目类别:
    Standard Grant
Graduate Student Support for the 2013 Gene Golub SIAM Summer School in China
2013年Gene Golub SIAM中国暑期学校研究生支持
  • 批准号:
    1262735
  • 财政年份:
    2013
  • 资助金额:
    $ 24.96万
  • 项目类别:
    Standard Grant
Collaborative Research: Efficient Solvers for Nonlinear Eigenvalue Problems and Applications
协作研究:非线性特征值问题的高效求解器及其应用
  • 批准号:
    1115817
  • 财政年份:
    2011
  • 资助金额:
    $ 24.96万
  • 项目类别:
    Standard Grant
Structure-Preserving Algorithms for Solving Large Scale Eigenvalue Problems
用于解决大规模特征值问题的结构保持算法
  • 批准号:
    0611548
  • 财政年份:
    2006
  • 资助金额:
    $ 24.96万
  • 项目类别:
    Standard Grant
ITR: Computational Theory and Tools for Reduced-Order Modeling of Very Large Dynamical Systems and Applications
ITR:超大型动力系统和应用降阶建模的计算理论和工具
  • 批准号:
    0220104
  • 财政年份:
    2002
  • 资助金额:
    $ 24.96万
  • 项目类别:
    Continuing Grant
Computations of Nonsymmetric Eigenvalue Problems and the Generalized Singular Value Decomposition
非对称特征值问题的计算和广义奇异值分解
  • 批准号:
    9102963
  • 财政年份:
    1991
  • 资助金额:
    $ 24.96万
  • 项目类别:
    Continuing Grant

相似海外基金

Mixed Precision Symmetric Eigensolvers: Proof of Concept
混合精度对称特征求解器:概念证明
  • 批准号:
    EP/W018101/1
  • 财政年份:
    2022
  • 资助金额:
    $ 24.96万
  • 项目类别:
    Research Grant
Development of error resilience technology for complex moment-based parallel eigensolvers
复杂基于矩的并行特征求解器的错误恢复技术的开发
  • 批准号:
    17K12690
  • 财政年份:
    2017
  • 资助金额:
    $ 24.96万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Eigensolvers: from high performance computing to quantum computation
特征求解器:从高性能计算到量子计算
  • 批准号:
    520223-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 24.96万
  • 项目类别:
    Engage Grants Program
Sharp a priori convergence estimates for Krylov subspace eigensolvers
Krylov 子空间特征求解器的尖锐先验收敛估计
  • 批准号:
    463329614
  • 财政年份:
  • 资助金额:
    $ 24.96万
  • 项目类别:
    Research Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了