UNS:Intergrating novel nutrient feeding strategies with computational glycosylation models to improve production of complex biotherapeutics from mammalian factories
UNS:将新型营养喂养策略与计算糖基化模型相结合,以提高哺乳动物工厂复杂生物治疗药物的生产
基本信息
- 批准号:1512265
- 负责人:
- 金额:$ 35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-07-01 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1512265Betenbaugh, Michael J. Biopharmaceuticals such as recombinant erythropoietin (rEPO) have transformed the lives of millions of patients in the US and around the world by enabling the recipients to address chronic renal failure or other illnesses. Unfortunately, the costs of providing these drugs are often prohibitive, limiting the availability and affordability of biotherapeutic treatments for patients that need them. This project will address both cost and efficacy challenges by transforming biomanufacturing with novel media additives. The quality of rEPO and other drugs will be enhanced by altering the properties of biopharmaceuticals in ways that endow these products with longer circulatory lifetimes, allowing patients to take lower doses at longer intervals. Likewise, this project will lower the costs of manufacturing by incorporating novel inexpensive nutrients that improve the capacity of producer cells to generate high quality drugs. In tandem, advanced computational models will be implemented in order to determine the optimal media formulations for generating high quality biopharmaceuticals. In addition, students from the high school to the post-graduate level will be educated and engaged in important bioprocessing techniques including mammalian cell culture, media design, and pharmaceutical manufacturing. In order to achieve these goals, an experimental and computational systems biotechnology approach will be implemented in which the media will be designed to optimize the glycosylation profile of biotherapeutics such as recombinant erythropoietin (rEPO) produced in Chinese hamster ovary (CHO) cells. CHO cells have emerged as a major cell factory for generating glycoprotein biotherapeutics. The structure and nature of the oligosaccharide (or glycan) component of a glycoprotein therapeutic is extremely important to the quality, efficacy, and value of the products. Biosynthetically, glycan structure is dictated by two factors: levels of glycosylation enyzmes and availability of nucleotide sugar substrates. This project will integrate experimental and computational methods to manipulate nutrient components to enhance the levels of these critical nucleotide sugar substrates and improve glycosylation. A series of novel sugar analogs will be investigated for their capacity to increase the nucleotide sugar pool and improve quality of rEPO and other biological products. These novel sugar analogs, which are simple and inexpensive to produce, contain chemical modifications on specific carbon groups that facilitate crossing the cell membrane for efficient channeling into pathways for nucleotide sugar synthesis. In order to elucidate the impact of these and other nutrients, these media components will be incorporated into a computational model of N-linked glycosylation that currently is based only on glycosylation enzyme transferase activity. The model will be extended to predict the influence on final glycan structures of nucleotide sugar biosynthesis from nutrients or supplements in the media. Such an expansion of the current glycoinformatics suite will enable users to design optimal media compositions for a desirable N-glycan profile present on glycoprotein biotherapeutics. By including the effect of nutrients on metabolism and linking that to the final glycan structure, this modeling tool will have significant versatility and power for rapidly and cost-effectively improving biotherapeutic product quality. As a result, novel nutrients will be incorporated into the bioprocessing media formulation of mammalian cell cultures with the assistance of comptutational algorithms in order to increase production and yield of desirable complex high quality biotherapeutics and reduce the need for time consuming and expensive experimental investigation. This approach may have a broad impact across a number of bioprocesses and biological products.This award by the Biotechnology and Biochemical Engineering Program of CBET is co-funded by the Biomaterials Program of the Division of Materials Research.
1512265Betenbaugh, Michael J. 重组促红细胞生成素 (rEPO) 等生物制药使患者能够解决慢性肾功能衰竭或其他疾病,从而改变了美国和世界各地数百万患者的生活。 不幸的是,提供这些药物的成本往往令人望而却步,限制了需要这些药物的患者的生物治疗的可用性和负担能力。 该项目将通过使用新型介质添加剂转变生物制造来解决成本和功效挑战。 rEPO 和其他药物的质量将通过改变生物制药的特性来提高,从而赋予这些产品更长的循环寿命,使患者能够以更长的时间间隔服用更低的剂量。 同样,该项目将通过掺入新颖的廉价营养素来降低制造成本,从而提高生产细胞生产高质量药物的能力。 与此同时,将实施先进的计算模型,以确定生产高质量生物制药的最佳培养基配方。此外,从高中到研究生水平的学生将接受教育并从事重要的生物加工技术,包括哺乳动物细胞培养、媒体设计和药品制造。 为了实现这些目标,将实施实验和计算系统生物技术方法,其中将设计培养基来优化生物治疗药物的糖基化谱,例如中国仓鼠卵巢(CHO)细胞中产生的重组促红细胞生成素(rEPO)。 CHO 细胞已成为生产糖蛋白生物治疗药物的主要细胞工厂。 糖蛋白治疗剂的寡糖(或聚糖)成分的结构和性质对于产品的质量、功效和价值极其重要。 在生物合成上,聚糖结构由两个因素决定:糖基化酶的水平和核苷酸糖底物的可用性。该项目将整合实验和计算方法来操纵营养成分,以提高这些关键核苷酸糖底物的水平并改善糖基化。 将研究一系列新型糖类似物增加核苷酸糖库并提高 rEPO 和其他生物制品质量的能力。 这些新型糖类似物生产简单且成本低廉,在特定碳基团上含有化学修饰,有助于穿过细胞膜,有效进入核苷酸糖合成途径。 为了阐明这些和其他营养素的影响,这些培养基成分将被纳入 N-连接糖基化的计算模型中,该模型目前仅基于糖基化酶转移酶活性。 该模型将扩展到预测培养基中的营养物或补充剂对核苷酸糖生物合成的最终聚糖结构的影响。 当前糖信息学套件的这种扩展将使用户能够设计最佳的培养基组合物,以获得糖蛋白生物治疗药物上所需的 N-聚糖谱。 通过考虑营养物质对新陈代谢的影响并将其与最终的聚糖结构联系起来,该建模工具将具有显着的多功能性和强大的功能,可以快速且经济高效地提高生物治疗产品的质量。 因此,在计算算法的帮助下,新型营养素将被纳入哺乳动物细胞培养物的生物加工培养基配方中,以增加所需的复杂高质量生物治疗药物的产量和产量,并减少耗时且昂贵的实验研究的需要。 这种方法可能会对许多生物过程和生物产品产生广泛的影响。该奖项由 CBET 生物技术和生化工程项目获得,并由材料研究部生物材料项目共同资助。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Betenbaugh其他文献
Three doses of COVID-19 mRNA vaccine induce class-switched antibody responses in inflammatory arthritis patients on immunomodulatory therapies
三剂 COVID-19 mRNA 疫苗在接受免疫调节治疗的炎症性关节炎患者中诱导类别转换抗体反应
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:7.3
- 作者:
J. M. Lee;Alexis Figueroa;J. Sachithanandham;Maggie Li;C. Connolly;J. Shapiro;Yiqun Chen;Michelle Jones;Venkata Gayatri Dhara;Marilyn Towns;John S Lee;Stephanie R. Peralta;A. Milstone;Michael Betenbaugh;A. Debes;J. Blankson;I. Sitaras;Steve Yoon;Elizabeth A Thompson;Clifton O. Bingham;S. Klein;A. Pekosz;J. Bailey - 通讯作者:
J. Bailey
Data-driven and Physics Informed Modelling of Chinese Hamster Ovary Cell Bioreactors
中国仓鼠卵巢细胞生物反应器的数据驱动和物理知情建模
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:4.3
- 作者:
Tianqi Cui;Tom S. Bertalan;Nelson Ndahiro;Pratik Khare;Michael Betenbaugh;C. Maranas;I. Kevrekidis - 通讯作者:
I. Kevrekidis
Some of the variables, some of the parameters, some of the times, with some physics known: Identification with partial information
一些变量,一些参数,一些时间,一些已知的物理学:用部分信息进行识别
- DOI:
10.48550/arxiv.2304.14214 - 发表时间:
2023-04-27 - 期刊:
- 影响因子:0
- 作者:
S. Malani;Tom S. Bertalan;Tianqi Cui;J. Avalos;Michael Betenbaugh;I. Kevrekidis - 通讯作者:
I. Kevrekidis
Application of machine learning models to identify serological predictors of COVID-19 severity and outcomes
应用机器学习模型来识别 COVID-19 严重程度和结果的血清学预测因素
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
S. Klein;Santosh Dhakal;A. Yin;Marta Escarra;Zoe Demko;N. Pisanic;Trevor Johnston;M. Trejo;K. Kruczynski;John S. Lee;Justin Hardick;Patrick Shea;J. Shapiro;Han;Maclaine Parish;Christopher A. Caputo;A. Ganesan;Sarika Mullapudi;Stephen Gould;Michael Betenbaugh;A. Pekosz;Christopher D Heaney;A. Antar;Yukari C Manabe;Andrea L. Cox;A. Karaba;Felipe Andrade;S. Zeger - 通讯作者:
S. Zeger
Genomic Features of Transposase and Randomly Derived Recombinant CHO Clones
转座酶和随机衍生的重组 CHO 克隆的基因组特征
- DOI:
10.1007/978-1-4939-9877-7_12 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
S. Huhn;Meiping Chang;B. Jiang;Xiaoyan Tang;Michael Betenbaugh;Z. Du - 通讯作者:
Z. Du
Michael Betenbaugh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Betenbaugh', 18)}}的其他基金
EFRI ELiS: Engineering Fungal Platforms for Sustainable Biomining and Recovery of Valuable Metals from Electronic Wastes
EFRI ELiS:用于可持续生物采矿和从电子废物中回收有价金属的工程真菌平台
- 批准号:
2318122 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
IUCRC Phase II+: Johns Hopkins University: Advanced Mammalian Biomanufacturing Innovation Center (AMBIC)
IUCCRC 第二阶段:约翰霍普金斯大学:先进哺乳动物生物制造创新中心 (AMBIC)
- 批准号:
2100800 - 财政年份:2021
- 资助金额:
$ 35万 - 项目类别:
Continuing Grant
AccelNet-Implementation: International Biomanufacturing Network (IBioNe)
AccelNet-实施:国际生物制造网络 (IBioNe)
- 批准号:
2114716 - 财政年份:2021
- 资助金额:
$ 35万 - 项目类别:
Continuing Grant
Collaborative Research: GOALI: Dynamic regulation of CHO metabolism to optimize biomanufacturing yields and quality
合作研究:GOALI:动态调节 CHO 代谢以优化生物制造产量和质量
- 批准号:
2035079 - 财政年份:2021
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Workshop on Rules of Life: Complexity in Algal Systems; Washington, D.C.; April 2020
生命规则研讨会:藻类系统的复杂性;
- 批准号:
2013902 - 财政年份:2020
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Collaborative Research: Synthetic Lichen Co-Cultures for Sustainable Generation of Biotechnology Products
合作研究:用于可持续生成生物技术产品的合成地衣共培养物
- 批准号:
1804733 - 财政年份:2018
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Collaborative Research: GOALI: Metabolic Engineering of Next Generation CHO Hosts for Monoclonal Antibody Production
合作研究:GOALI:用于单克隆抗体生产的下一代 CHO 宿主的代谢工程
- 批准号:
1604527 - 财政年份:2016
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Phase I I/UCRC Johns Hopkins University Site: Advanced Mammalian Biomanufacturing Innovation Center (AMBIC)
I 期 I/UCRC 约翰霍普金斯大学基地:先进哺乳动物生物制造创新中心 (AMBIC)
- 批准号:
1624684 - 财政年份:2016
- 资助金额:
$ 35万 - 项目类别:
Continuing Grant
Collaborative Research: Planning Grant: I/UCRC for Advanced Mammalian Biomanufacturing Innovation Center (AMBIC)
合作研究:规划补助金:I/UCRC 先进哺乳动物生物制造创新中心 (AMBIC)
- 批准号:
1464435 - 财政年份:2015
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Post-Translational Engineering to Improve Biotherapeutic Quality from CHO Cells
提高 CHO 细胞生物治疗质量的翻译后工程
- 批准号:
1264802 - 财政年份:2013
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
相似国自然基金
无穷维随机Volterra积分系统的最优控制理论
- 批准号:12371449
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
具有竞争特征的非线性积分微分方程的动力学研究
- 批准号:12371174
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
积分算子定量加权及非卷积型变差算子相关问题
- 批准号:12371092
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于单侧J-积分的FRP-混凝土界面疲劳裂纹扩展行为表征
- 批准号:12302240
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于特征基函数的准确高效电磁散射积分方程方法研究
- 批准号:62371228
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Intergrating a Smoke-Free Home Intervention into the 5As to Support Cessation
将无烟家庭干预纳入 5A 以支持戒烟
- 批准号:
10660960 - 财政年份:2019
- 资助金额:
$ 35万 - 项目类别:
Intergrating a Smoke-Free Home Intervention into the 5As to Support Cessation
将无烟家庭干预纳入 5A 以支持戒烟
- 批准号:
10219194 - 财政年份:2019
- 资助金额:
$ 35万 - 项目类别:
Intergrating a Smoke-Free Home Intervention into the 5As to Support Cessation
将无烟家庭干预纳入 5A 以支持戒烟
- 批准号:
10442550 - 财政年份:2019
- 资助金额:
$ 35万 - 项目类别:
Induction of intergrating NF-kB by P gingivalis LPS
牙龈卟啉单胞菌 LPS 诱导整合 NF-kB
- 批准号:
7157643 - 财政年份:2004
- 资助金额:
$ 35万 - 项目类别:
Induction of intergrating NF-kB by P gingivalis LPS
牙龈卟啉单胞菌 LPS 诱导整合 NF-kB
- 批准号:
7483844 - 财政年份:2004
- 资助金额:
$ 35万 - 项目类别: