SusChEM: Materials and Architectures for High Efficiency Organic Photovoltaics

SusChEM:高效有机光伏材料和架构

基本信息

  • 批准号:
    1511757
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-15 至 2018-08-31
  • 项目状态:
    已结题

项目摘要

PI: Mark E ThompsonProposal Number: 1511757The sun represents the most abundant potential source of sustainable energy on earth. Solar cells that use light-absorbing organic polymers to convert light to electricity ? organic photovoltaic (OPV) devices - offer a potentially low-cost route for renewable electricity production. However, in order to achieve parity with other solar photovoltaic technologies, organic solar cells must increase their power conversion efficiency past the current 10.5% world record. One reason for this low efficiency is that OPV devices do not harness the light energy in the infra-red range of the solar spectrum, which is beyond the visible range of light. The overall goal of this project is to design new light absorption materials for OPV that simultaneously increase infra-red light absorption and improve the voltage output, leading to a potentially significant incremental increase in solar energy conversion efficiency. Through this research, fundamental scientific understanding on how to more rationally align the energy conversion processes within OPV devices will be also gained. As part of the educational activities associated with this project, students from a community college in Los Angeles will participate in summer research on solar energy, hosted through the laboratory of the principal investigator.The overall goal of the proposed research is to enhance the performance of organic photovoltaic (OPV) devices through the development of new materials and device architectures that extend light absorption and conversion into the near infra-red (near-IR) portion of the solar spectrum, and concurrently increase the open circuit voltage towards its theoretical limit. Towards this end, small molecules that absorb strongly into the 950-1000 nm range will be used as part of single and multiple sensitization strategies to achieve broadband absorption in the visible to near-IR spectral range. Furthermore, intramolecular symmetry breaking charge transfer materials, which contain both electron donors and acceptors, will be designed to narrow the offset between the energies of the charge transfer state, exciton, and the open-circuit voltage. In this context, the research plan has two primary objectives that will be carried out interactively. The first objective is to prepare and characterize the photophysical properties of new materials, and then second objective to develop novel structures that utilize these new materials in OPV devices. Theoretical models will be used to predict absorption energies for a wide range of cyanine-like dyes for near-IR, and from these studies, the most promising small molecule materials will be synthesized, characterized by photophysical methods, and then tested in OPV devices. Synthetic and photophysical characterization studies will also be carried out to determine the parameters that control symmetry breaking charge transfer (SBCT) in strongly absorbing materials. This fundamental understanding will be used to design OPV device architectures to accommodate these SCBT materials. The device physics of OPV devices containing SCBT materials will be then characterized to understand the phenomena that could lead to increased open circuit voltage. Finally, all dye targets will be designed to serve as suitable ligands for preparation of zinc-dye complexes. These new zinc complexes are expected to promote symmetry breaking charge transfer, making it possible to simultaneously increase near-IR spectral response and increase open circuit voltage. If successful, these new OPV materials will improve solar energy conversion efficiency through synergistic design of light absorption and charge transfer processes.
PI:Mark E Thompson 提案编号:1511757 太阳是地球上最丰富的潜在可持续能源。 使用吸光有机聚合物将光转化为电能的太阳能电池?有机光伏(OPV)设备——为可再生电力生产提供潜在的低成本途径。 然而,为了实现与其他太阳能光伏技术的平价,有机太阳能电池必须将其电力转换效率提高到超过目前10.5%的世界纪录。 效率低的原因之一是 OPV 设备无法利用太阳光谱红外范围内的光能,该范围超出了可见光范围。 该项目的总体目标是为 OPV 设计新型光吸收材料,同时增加红外光吸收并提高电压输出,从而可能显着提高太阳能转换效率。 通过这项研究,还将获得关于如何更合理地调整 OPV 设备内的能量转换过程的基本科学理解。 作为与该项目相关的教育活动的一部分,洛杉矶一所社区大学的学生将参加由首席研究员实验室主办的夏季太阳能研究。拟议研究的总体目标是提高太阳能的表现通过开发新材料和器件架构,将光吸收和转换扩展到太阳光谱的近红外(near-IR)部分,同时将开路电压提高到理论极限,从而开发出有机光伏(OPV)器件。为此,在 950-1000 nm 范围内强烈吸收的小分子将被用作单一和多重敏化策略的一部分,以实现可见光到近红外光谱范围内的宽带吸收。 此外,包含电子供体和受体的分子内对称性破坏电荷转移材料将被设计成缩小电荷转移态、激子和开路电压的能量之间的偏移。在这种背景下,该研究计划有两个主要目标,这两个目标将互动进行。 第一个目标是制备新材料并表征其光物理性质,第二个目标是开发在 OPV 器件中利用这些新材料的新颖结构。 理论模型将用于预测各种花青类染料的近红外吸收能,并且从这些研究中,将合成最有前途的小分子材料,通过光物理方法表征,然后在 OPV 器件中进行测试。 还将进行合成和光物理表征研究,以确定控制强吸收材料中对称破缺电荷转移(SBCT)的参数。 这一基本认识将用于设计 OPV 器件架构以适应这些 SCBT 材料。然后将对含有 SCBT 材料的 OPV 器件的器件物理特性进行表征,以了解可能导致开路电压增加的现象。 最后,所有染料靶标将被设计​​作为制备锌染料复合物的合适配体。这些新的锌配合物有望促进对称性破坏的电荷转移,从而可以同时增加近红外光谱响应和增加开路电压。 如果成功,这些新型 OPV 材料将通过光吸收和电荷转移过程的协同设计来提高太阳能转换效率。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mark Thompson其他文献

Making FAIR Easy with FAIR Tools: From Creolization to Convergence
使用 FAIR 工具让 FAIR 变得简单:从克里奥尔化到融合
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Mark Thompson;K. Burger;R. Kaliyaperumal;M. Roos;Luiz Olavo Bonino da Silva Santos
  • 通讯作者:
    Luiz Olavo Bonino da Silva Santos
Motivation for Weight Loss
减肥的动机
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Judy Tigay;Mark Thompson;Donna Sutton;M. Lesley
  • 通讯作者:
    M. Lesley
The Protein Kinase SnRK2.6 Mediates the Regulation of Sucrose Metabolism and Plant Growth in Arabidopsis[W][OA]
  • DOI:
    10.1104/pp.109.150789
  • 发表时间:
    2010-03-03
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Zhifu Zheng;Xiaoping Xu;Rodney A. Crosley;Scott A. Greenwalt;Yuejin Sun;B. Blakeslee;Lizheng Wang;W. Ni;Megan S. Sopko;C. Yao;K. Yau;S. Burton;M. Zhuang;D. Mccaskill;D. Gachotte;Mark Thompson;T. Greene
  • 通讯作者:
    T. Greene
Photovoltaics and bio-inspired light harvesting: general discussion
  • DOI:
    10.1039/c9fd90028d
  • 发表时间:
    2019-07
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Michael Ashfold;Jon Bender;Eric Bittner;Jeffrey Cina;Carlos E. Crespo-Hernández;Natércia das Neves Rodrigues;Jahan Dawlaty;Ryan Dill;Amro Dodin;Marta Duchi;Laura Estergreen;Gregory Gate;James Gaynor;Naomi Ginsberg;Christopher Grieco;Sharon Hammes-Schiffer;Vanessa Huxter;Shawn Irgen-Gioro;Jimmy Joy;Bern Kohler;Nadia Korovina;Johannes Mahl;Andrew Marcus;Todd Martinez;Karen Morenz;Amanda Morris;Jennifer Ogilvie;Thomas A.A. Oliver;Tom Penfold;Petter Persson;Trevor Roberts;Benjamin Schwartz;Yin Song;Mark Thompson;Michael Wasielewski;Emily Weiss;Kristopher Williams
  • 通讯作者:
    Kristopher Williams
Identification, cloning and expression of the mouse N-acetylglutamate synthase gene.
小鼠N-乙酰谷氨酸合酶基因的鉴定、克隆和表达。
  • DOI:
    10.1042/bj20020161
  • 发表时间:
    2002-06-15
  • 期刊:
  • 影响因子:
    0
  • 作者:
    L. Caldovic;H. Morizono;Xiaolin Yu;Mark Thompson;D. Shi;R. Gallegos;N. Allewell;M. Malamy;M. Tuchman
  • 通讯作者:
    M. Tuchman

Mark Thompson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mark Thompson', 18)}}的其他基金

A new population of radio filaments in the Galactic Plane
银河平面上的一群新的无线电细丝
  • 批准号:
    ST/W00125X/1
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Research Grant
Silicon Photonics for Quantum Fibre Networks
用于量子光纤网络的硅光子学
  • 批准号:
    EP/R043841/1
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Research Grant
Newton STFC-NARIT Capacity Building for Thai Radio Astronomy Phase 2
Newton STFC-NARIT 泰国射电天文学能力建设第二阶段
  • 批准号:
    ST/R006555/1
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Research Grant
I-Corps: Thermally-Responsive Hydrogels for Ocular Drug Delivery
I-Corps:用于眼部药物输送的热响应水凝胶
  • 批准号:
    1713762
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Newton STFC-NARIT Capacity Building for Thai Radio Astronomy
Newton STFC-NARIT 泰国射电天文学能力建设
  • 批准号:
    ST/P005675/1
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Research Grant
Quantum Technology Capital: Quantum Photonic Integrated Circuits (QuPIC)
量子科技资本:量子光子集成电路(QuPIC)
  • 批准号:
    EP/N015126/1
  • 财政年份:
    2016
  • 资助金额:
    $ 30万
  • 项目类别:
    Research Grant
Silicon Quantum Photonics
硅量子光子学
  • 批准号:
    EP/K033085/1
  • 财政年份:
    2013
  • 资助金额:
    $ 30万
  • 项目类别:
    Fellowship
Integrated Orbital Angular Momentum Quantum Photonics
集成轨道角动量量子光子学
  • 批准号:
    EP/K023063/1
  • 财政年份:
    2012
  • 资助金额:
    $ 30万
  • 项目类别:
    Research Grant
A travelling exhibition of the Herschel Hi-GAL Milky Way
赫歇尔 Hi-GAL 银河巡展
  • 批准号:
    ST/J501542/1
  • 财政年份:
    2012
  • 资助金额:
    $ 30万
  • 项目类别:
    Research Grant
Collaborative Research: Acquisition of a 400 MHz NMR at the University of Southern California
合作研究:在南加州大学购买 400 MHz NMR
  • 批准号:
    0840366
  • 财政年份:
    2009
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似国自然基金

轨道车辆复合材料转向架构架载荷识别与寿命预测技术研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
航天折展索网结构的三维非线性超材料框架构件的禁带调控机制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
多功能聚乳酸复合材料支架构建及促进骨再生研究
  • 批准号:
    52163016
  • 批准年份:
    2021
  • 资助金额:
    35 万元
  • 项目类别:
    地区科学基金项目
M2型巨噬细胞早期靶向富集促内源性再生的骨修复支架构建及其材料生物学效应
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    61 万元
  • 项目类别:
    面上项目
基于二维共价有机框架构建用于催化甲烷转化的多孔高分子复合材料
  • 批准号:
    52063014
  • 批准年份:
    2020
  • 资助金额:
    35 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

CAREER: A Novel Electrically-assisted Multimaterial Printing Approach for Scalable Additive Manufacturing of Bioinspired Heterogeneous Materials Architectures
职业:一种新型电辅助多材料打印方法,用于仿生异质材料架构的可扩展增材制造
  • 批准号:
    2338752
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
FuSe: Bio-inspired sensorimotor control for robotic locomotion with neuromorphic architectures using beyond-CMOS materials and devices
FuSe:使用超越 CMOS 材料和设备的神经形态架构的机器人运动仿生感觉运动控制
  • 批准号:
    2328815
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
FuSe: Bio-inspired sensorimotor control for robotic locomotion with neuromorphic architectures using beyond-CMOS materials and devices
FuSe:使用超越 CMOS 材料和设备的神经形态架构的机器人运动仿生感觉运动控制
  • 批准号:
    2328815
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Scalable 2D-Materials Architectures (2D-MATURE): Synthesis and Processing, Characterization and Functionality, Implementation and Demonstrations (Inter. Collabor. - DFG-IRTG)
可扩展的 2D 材料架构 (2D-MATURE):合成和处理、表征和功能、实施和演示(Inter. Collabor. - DFG-IRTG)
  • 批准号:
    565360-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Collaborative Research and Training Experience
Highly Tunable Brush-Like Polymer Architectures to Control Therapeutic Delivery and Cell-Material Interactions
高度可调的刷状聚合物架构,用于控制治疗传递和细胞材料相互作用
  • 批准号:
    10669252
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了