Using Measurement-based Approach to Model, Predict and Control Large-scale Power Grids

使用基于测量的方法对大型电网进行建模、预测和控制

基本信息

  • 批准号:
    1509624
  • 负责人:
  • 金额:
    $ 28.97万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-08-01 至 2021-07-31
  • 项目状态:
    已结题

项目摘要

The electric power grid is the backbone of all modern societies. With increasing renewable power generation, it becomes a challenge to operate the already aging U.S. power grids efficiently and reliably. The 2003 U.S. Northeast/Quebec and 2012 India blackouts have demonstrated the catastrophic consequences of a massive blackout. However, blackouts such as these could be prevented if the power system could be monitored and controlled more accurately and timely. The transformative research proposed in this project could potentially make full usage of the high-resolution measurement data available in the power grids and develop a completely new measurement-based approach to steer the power grids away from large blackouts early on. The proposed project is also coupled with a strong educational component to engage students from underrepresented groups and a broad dissemination of research findings.Based on over ten years of observation of the three major North American grids and major grids worldwide via synchrophasor measurement, strong linearity of large-scale power systems has been observed. This observation can also be verified by the interconnection-level dynamic simulations. No longer constricted by the habitual belief that the electric power grid is a nonlinear network that should be always represented by a high-order circuit-based model, this project proposes an entirely new measurement-based method to model, predict and control a large-scale interconnected power grid, especially in regard to small-signal dynamic behaviors. This project will develop measurement-based power system analysis and control applications that take full advantage of this underutilized system linearity. Specifically, the proposed linearity study will characterize the strong linearity of large-scale power grids, which has been understandably neglected by the research community, as the first step. The study will analyze the source of large-scale power grid linearity and re-examine the conventional definition of small signal. Secondly, this project will construct a linear-structured model using measurements to predict a large-scale power grid?s dynamic behavior following a small-signal disturbance. Predicting a power grid's behavior is very important for large-scale interconnected power systems and this predictive capability will provide system operators with true look-ahead capabilities. Thirdly, another novel application of a large-scale power grid?s linearity involves representing the less-interested areas of a large-scale circuit-based model with measurement-based equivalent models. This hybrid circuit and measurement model will easily achieve several orders of magnitudes higher simulation speed while maintaining acceptable accuracy. Finally and most importantly, compared to the circuit-based model that cannot be easily updated frequently, this measurement-derived model could be updated using real-time streaming measurements and keep track of the continuous change of power grids. For example, a measurement based oscillation damping controller could be updated in real time and would be much more accurate and robust, improving the stability of an interconnected power grid. With more high-resolution measurement data available, the proposed research will have a direct and immediate impact on how the U.S. interconnected power system should be modeled, analyzed, and controlled; and this advanced approach will contribute to the energy security and efficiency of the U.S. electric power grid infrastructure.
电网是所有现代社会的支柱。随着可再生能源发电量的增加,高效可靠地运行已经老化的美国电网成为了一项挑战。 2003年美国东北部/魁北克省和2012年印度的停电事件已经证明了大规模停电的灾难性后果。然而,如果能够更准确、更及时地监测和控制电力系统,则可以防止此类停电。该项目提出的变革性研究有可能充分利用电网中可用的高分辨率测量数据,并开发一种全新的基于测量的方法,以引导电网尽早避免大停电。拟议的项目还结合了强大的教育成分,以吸引来自代表性不足群体的学生,并广泛传播研究成果。基于通过同步相量测量对北美三大电网和全球主要电网十多年来的观察,大型电力系统已被观测到。这一观察结果也可以通过互连级动态仿真得到验证。不再受传统观念的束缚,即电网是一个非线性网络,应始终由基于高阶电路的模型表示,该项目提出了一种全新的基于测量的方法来建模、预测和控制大型电网。大规模互联电网,特别是在小信号动态行为方面。该项目将开发基于测量的电力系统分析和控制应用程序,充分利用这种未充分利用的系统线性度。具体来说,所提出的线性研究将表征大规模电网的强线性特征,这是可以理解的,作为第一步,研究界忽视了这一点。该研究将分析大规模电网线性的来源,并重新审视小信号的常规定义。其次,该项目将使用测量结果构建线性结构模型,以预测小信号扰动后大规模电网的动态行为。预测电网的行为对于大规模互连电力系统非常重要,这种预测能力将为系统运营商提供真正的前瞻能力。第三,大规模电网线性的另一个新颖应用涉及用基于测量的等效模型来表示基于大规模电路的模型的不太感兴趣的区域。这种混合电路和测量模型将轻松实现几个数量级的仿真速度,同时保持可接受的精度。最后也是最重要的是,与无法轻松频繁更新的基于电路的模型相比,这种测量衍生的模型可以使用实时流测量进行更新,并跟踪电网的连续变化。例如,基于测量的振荡阻尼控制器可以实时更新,并且更加准确和稳健,从而提高互连电网的稳定性。随着更多高分辨率测量数据的出现,拟议的研究将对美国互联电力系统的建模、分析和控制产生直接和直接的影响;这种先进的方法将有助于美国电网基础设施的能源安全和效率。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Dynamic Model Reduction for Large-Scale Power Systems Using Wide-Area Measurements
使用广域测量减少大型电力系统的动态模型
  • DOI:
    10.1109/access.2020.2992624
  • 发表时间:
    2020-01
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Tong, Ning;Jiang, Zhihao;Zhu, Lin;Liu, Yilu
  • 通讯作者:
    Liu, Yilu
A Comprehensive Method to Mitigate Forced Oscillations in Large Interconnected Power Grids
缓解大型互连电网受迫振荡的综合方法
  • DOI:
    10.1109/access.2021.3056123
  • 发表时间:
    2021-01
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Zhu, Lin;Yu, Wenpeng;Jiang, Zhihao;Zhang, Chengwen;Zhao, Yi;Dong, Jiaojiao;Wang, Weikang;Liu, Yilu;Farantatos, Evangelos;Ramasubramanian, Deepak;et al
  • 通讯作者:
    et al
Impact of Wide-Area Oscillation Damping Control using Measurement-Driven Approach on System Separation - Saudi Grid Case Study
使用测量驱动方法进行广域振荡阻尼控制对系统分离的影响 - 沙特电网案例研究
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yilu Liu其他文献

Real-Time Inertia Estimation Tool Implementation Based on Probing Signals
基于探测信号的实时惯性估计工具实现
  • DOI:
    10.1109/irec59750.2023.10389220
  • 发表时间:
    2023-12-16
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xinlan Jia;Zhihao Jiang;H. Yin;Yi Zhao;Yilu Liu;Jin Tan;Andy Hoke;Jiangkai Peng;Przemyslaw Koralewicz;E. Mendiola;Ezequiel Hernandez;Juan Bellido;Kelsey Horowitz;Aaron Madtson;Brad W. Rockwell;Cameron J. Kruse
  • 通讯作者:
    Cameron J. Kruse
Pre-existing cardiometabolic comorbidities and survival of middle-aged and elderly non-small cell lung cancer patients.
中老年非小细胞肺癌患者原有的心脏代谢合并症和生存率。
  • DOI:
    10.26599/1671-5411.2023.10.002
  • 发表时间:
    2023-10-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hanyang Liang;Dong Liu;Hao Wang;Zhengqing Ba;Ying Xiao;Yilu Liu;Yong Wang;Jiansong Yuan
  • 通讯作者:
    Jiansong Yuan
Comparison of MIMO system identification methods for electromechanical oscillation damping estimation
机电振荡阻尼估计的 MIMO 系统辨识方法比较
Dynamic Phasor Model-Based Synchrophasor Estimation Algorithm for M-Class PMU
基于动态相量模型的 M 级 PMU 同步相量估计算法
  • DOI:
    10.1109/tpwrd.2014.2353816
  • 发表时间:
    2015-01-14
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    T. Bi;Hao Liu;Qian Feng;Cheng Qian;Yilu Liu
  • 通讯作者:
    Yilu Liu
Multi-Interharmonic Spectrum Separation and Measurement Under Asynchronous Sampling Condition
异步采样条件下的多间谐波频谱分离与测量

Yilu Liu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yilu Liu', 18)}}的其他基金

AI-Assisted Algorithms for Automatic AC Power Flow Model Creation based on DC Dispatch
基于直流调度的人工智能辅助自动交流潮流模型创建算法
  • 批准号:
    2243204
  • 财政年份:
    2023
  • 资助金额:
    $ 28.97万
  • 项目类别:
    Standard Grant
PFI-RP: Increasing the stability of large-scale electric power systems through an adaptive measurement-driven controller prototype.
PFI-RP:通过自适应测量驱动控制器原型提高大型电力系统的稳定性。
  • 批准号:
    1941101
  • 财政年份:
    2020
  • 资助金额:
    $ 28.97万
  • 项目类别:
    Standard Grant
MRI: Development of Pulsar-based Power Grid Timing Instrumentation and Technology
MRI:基于脉冲星的电网授时仪器和技术的发展
  • 批准号:
    1920025
  • 财政年份:
    2019
  • 资助金额:
    $ 28.97万
  • 项目类别:
    Standard Grant
CPS: Small: Data-driven Real-time Data Authentication in Wide-Area Energy Infrastructure Sensor Networks
CPS:小型:广域能源基础设施传感器网络中数据驱动的实时数据身份验证
  • 批准号:
    1931975
  • 财政年份:
    2019
  • 资助金额:
    $ 28.97万
  • 项目类别:
    Standard Grant
EAGER: Real-Time: Intelligent Mitigation of Low-Frequency Oscillations in Smart Grid Using Real-time Learning
EAGER:实时:利用实时学习智能缓解智能电网中的低频振荡
  • 批准号:
    1839684
  • 财政年份:
    2018
  • 资助金额:
    $ 28.97万
  • 项目类别:
    Standard Grant
Multiple FACTS Devices Coordination Using Synchronized Wide Area Measurements (Collaborative Proposal with UMR)
使用同步广域测量协调多个 FACTS 设备(与 UMR 的合作提案)
  • 批准号:
    0701744
  • 财政年份:
    2007
  • 资助金额:
    $ 28.97万
  • 项目类别:
    Standard Grant
Study of Global Power System Dynamic Behavior Based on Wide-Area Frequency Measurements
基于广域频率测量的全球电力系统动态行为研究
  • 批准号:
    0523315
  • 财政年份:
    2005
  • 资助金额:
    $ 28.97万
  • 项目类别:
    Standard Grant
MRI: Development of Integrative Instrumentation for A Nation-Wide Power System Frequency Dynamics Monitoring Network
MRI:全国电力系统频率动态监测网络综合仪器的开发
  • 批准号:
    0215731
  • 财政年份:
    2002
  • 资助金额:
    $ 28.97万
  • 项目类别:
    Standard Grant
Integration of Energy Storage Systems and Modern Flexible AC Transmission Devices
储能系统与现代柔性交流输电装置的集成
  • 批准号:
    9988868
  • 财政年份:
    2000
  • 资助金额:
    $ 28.97万
  • 项目类别:
    Standard Grant
GOALI-Technologies Joint Research Project
GOALI-Technologies联合研究项目
  • 批准号:
    9801139
  • 财政年份:
    1998
  • 资助金额:
    $ 28.97万
  • 项目类别:
    Standard Grant

相似国自然基金

基于束流位置测量控制处理器的储存环轨道反馈系统设计
  • 批准号:
    12305165
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于电荷诱导红外光响应法的表面电荷瞬态测量及其诱发沿面放电机制
  • 批准号:
    52377143
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
缪子反常磁矩实验中基于深度学习的径迹重建和磁场测量研究
  • 批准号:
    12305217
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
超导线路量子系统中基于测量反馈控制的开放量子系统实验研究
  • 批准号:
    12374471
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
基于光学可视化测量的深冷高压氢射流及喷射火理论模型研究
  • 批准号:
    52306255
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Quantitative assessment of angiogenesis using ultrasound multiple scattering
使用超声多重散射定量评估血管生成
  • 批准号:
    10718807
  • 财政年份:
    2023
  • 资助金额:
    $ 28.97万
  • 项目类别:
Smartphone-based POC Testing for HIV Using Glowstick Chemistry
基于智能手机的 HIV 使用荧光棒化学进行 POC 测试
  • 批准号:
    10594143
  • 财政年份:
    2023
  • 资助金额:
    $ 28.97万
  • 项目类别:
Neurobiological impact of acute digital media abstinence among drug using college students
吸毒大学生急性数字媒体戒断的神经生物学影响
  • 批准号:
    10677380
  • 财政年份:
    2023
  • 资助金额:
    $ 28.97万
  • 项目类别:
Reducing Opioid and Other Drug Use in Justice-Involved Emerging Adults using Paraprofessional Coaches (with and without Lived Experience) to Deliver Effective Services in a Non-Treatment Setting
使用辅助专业教练(有或没有生活经验)减少涉及司法的新兴成年人的阿片类药物和其他药物使用,以在非治疗环境中提供有效的服务
  • 批准号:
    10846139
  • 财政年份:
    2023
  • 资助金额:
    $ 28.97万
  • 项目类别:
Triage of Developmental and Reproductive Toxicants using an In vitro to In Vivo Extrapolation (IVIVE)-Toxicokinetic Computational modeling Application
使用体外到体内外推法 (IVIVE) 对发育和生殖毒物进行分类 - 毒代动力学计算模型应用
  • 批准号:
    10757140
  • 财政年份:
    2023
  • 资助金额:
    $ 28.97万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了