Mechanisms for Energy Conservation in Onsager Supercritical Fluids
Onsager 超临界流体的节能机制
基本信息
- 批准号:1515705
- 负责人:
- 金额:$ 27.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-06-15 至 2019-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The complexity of turbulent motion of fluids like water presents many theoretical as well as technological challenges. From the practical standpoint laws of turbulence are crucial in many real-life applications. They stand behind the modern design of a plane airfoil or development of weather and climate forecast models. One of the features of turbulence is called anomalous energy dissipation. This phenomenon arises when the motion of a fluid is so chaotic or rough that the the classical laws of smooth dynamics no longer apply. Anomalous energy dissipation is harnessed in many commonly used energy-dumping mechanisms, such as automobile wheel struts. Common though it is, in some cases energy dissipation does not occur even in what otherwise would be considered a flow turbulent enough to facilitate such dissipation. It has been observed that in various natural phenomena, such as vortex sheets that develop behind the wing of a plane, energy dissipation does not occur until motion reaches a supercritical state. The project goal is to isolate several mechanisms responsible for energy preservation or dissipation in fluid motion that is turbulent or nearly so. A main focus is on investigation of the role of symmetries in energy conservation. Students are included in the project. The investigator studies weak solutions to the Euler equation and its viscous Navier-Stokes counterpart in the vanishing viscosity limit regime, by considering the role of energy conservation or dissipation in the fluid flows described by these equations. The equations have been shown to describe turbulence rather accurately from a numerical point of view, although theoretically they present many challenges. Following Onsager, in terms of regularity a solution reaches its turbulent state when smoothness of the flow is reduced to a third of one full derivative, also known as Onsager regularity. In that regularity regime the investigator examines four main mechanisms as candidates responsible for energy conservation or dissipation: Hamiltonian structure of the underlying governing equation, incompressibility condition, basic scaling symmetries and transport nature of the motion, and the vanishing viscosity limit in the two-dimensional setting. The last point connects energy dissipation to regularity of solutions of the Euler equations. The project involves active participation of students.
水等流体的湍流运动的复杂性提出了许多理论和技术挑战。 从实践的角度来看,湍流定律在许多实际应用中至关重要。 他们支持飞机机翼的现代设计或天气和气候预报模型的开发。 湍流的特征之一称为反常能量耗散。 当流体的运动非常混乱或粗糙以至于光滑动力学的经典定律不再适用时,就会出现这种现象。 许多常用的能量转储机制都利用了异常能量耗散,例如汽车车轮支柱。 尽管很常见,但在某些情况下,即使在被认为足以促进这种耗散的湍流流动中,也不会发生能量耗散。 据观察,在各种自然现象中,例如在飞机机翼后面形成的涡片,直到运动达到超临界状态才会发生能量耗散。 该项目的目标是隔离在湍流或近乎湍流的流体运动中负责能量保存或耗散的几种机制。 主要重点是研究对称性在能量守恒中的作用。 学生也被纳入该项目。 研究人员通过考虑这些方程描述的流体流动中能量守恒或耗散的作用,研究欧拉方程及其在消失粘度极限状态下的粘性纳维-斯托克斯方程的弱解。 这些方程已被证明可以从数值角度相当准确地描述湍流,尽管理论上它们提出了许多挑战。 遵循 Onsager,就正则性而言,当流动的平滑度降低到全导数的三分之一(也称为 Onsager 正则性)时,解就会达到湍流状态。 在该规律性体系中,研究人员检查了四种主要机制作为负责能量守恒或耗散的候选机制:基础控制方程的哈密顿结构、不可压缩条件、基本标度对称性和运动的输运性质,以及二维中的消失粘度极限环境。 最后一点将能量耗散与欧拉方程解的正则性联系起来。 该项目需要学生的积极参与。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Roman Shvydkoy其他文献
Well-posedness and Long Time Behavior of the Euler Alignment System with Adaptive Communication Strength
具有自适应通信强度的欧拉对准系统的适定性和长时间行为
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Roman Shvydkoy;Trevor Teolis - 通讯作者:
Trevor Teolis
Generic alignment conjecture for systems of Cucker–Smale type
Cucker-Smale 型系统的一般对齐猜想
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Roman Shvydkoy - 通讯作者:
Roman Shvydkoy
Roman Shvydkoy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Roman Shvydkoy', 18)}}的其他基金
Hydrodynamics of Collective Phenomena and Applications
集体现象的流体动力学及其应用
- 批准号:
2107956 - 财政年份:2021
- 资助金额:
$ 27.45万 - 项目类别:
Standard Grant
Mathematics of Collective Behavior: From Self-Organized Dynamics to Fluid Turbulence
集体行为数学:从自组织动力学到流体湍流
- 批准号:
1813351 - 财政年份:2018
- 资助金额:
$ 27.45万 - 项目类别:
Standard Grant
Anomalous dissipation in fluids, deterministic turbulence, and intermittency
流体中的反常耗散、确定性湍流和间歇性
- 批准号:
1210896 - 财政年份:2012
- 资助金额:
$ 27.45万 - 项目类别:
Standard Grant
Onsager's conjecture and the energy of singular flows
昂萨格猜想和奇异流能量
- 批准号:
0907812 - 财政年份:2009
- 资助金额:
$ 27.45万 - 项目类别:
Continuing Grant
相似国自然基金
组蛋白乙酰转移酶GCN5调控糖脂代谢促进胶质母细胞瘤干细胞活力的机制与功能研究
- 批准号:82373095
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
光周期调控布氏田鼠精子活力的分子机制研究
- 批准号:32301302
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
山地社区公共空间驻留活力的时空分布特征与影响机制研究
- 批准号:52308007
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
紫花苜蓿MsASMT调控种子活力的分子机制
- 批准号:32301480
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
miPEP398-miR398诱导亚低温条件下番茄种子活力的机制研究
- 批准号:32372677
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Energy Efficiency and Energy Justice: Understanding Distributional Impacts of Energy Efficiency and Conservation Programs and the Underlying Mechanisms
合作研究:能源效率和能源正义:了解能源效率和节约计划的分配影响及其潜在机制
- 批准号:
2315029 - 财政年份:2023
- 资助金额:
$ 27.45万 - 项目类别:
Standard Grant
Collaborative Research: Energy Efficiency and Energy Justice: Understanding Distributional Impacts of Energy Efficiency and Conservation Programs and the Underlying Mechanisms
合作研究:能源效率和能源正义:了解能源效率和节约计划的分配影响及其潜在机制
- 批准号:
2315027 - 财政年份:2023
- 资助金额:
$ 27.45万 - 项目类别:
Standard Grant
Genetic and molecular mechanisms of Nf1-dependent neuronal regulation of metabolism
Nf1 依赖性神经元代谢调节的遗传和分子机制
- 批准号:
10721999 - 财政年份:2022
- 资助金额:
$ 27.45万 - 项目类别:
Energy conservation in turbulent flows of complex and simple fluids: mechanisms and new approaches
复杂和简单流体湍流中的能量守恒:机制和新方法
- 批准号:
RGPIN-2014-04903 - 财政年份:2021
- 资助金额:
$ 27.45万 - 项目类别:
Discovery Grants Program - Individual
Energy conservation in turbulent flows of complex and simple fluids: mechanisms and new approaches
复杂和简单流体湍流中的能量守恒:机制和新方法
- 批准号:
RGPIN-2014-04903 - 财政年份:2020
- 资助金额:
$ 27.45万 - 项目类别:
Discovery Grants Program - Individual