Collaborative Research: Computational Methods for Stability Assessment of Power Systems with High Penetration of Clean Renewal Energy

合作研究:清洁可再生能源高渗透电力系统稳定性评估计算方法

基本信息

  • 批准号:
    1509036
  • 负责人:
  • 金额:
    $ 5.42万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-08-01 至 2017-07-31
  • 项目状态:
    已结题

项目摘要

Collaborative Research: Computational Methods for Stability Assessment of Power Systems with high penetration of clean renewable energyThe electrical power grid is currently undergoing the architectural revolution with the increasing penetration of renewable and distributed energy sources and the presence of millions of active endpoints. Introduction of these novel components affects the stability of the system, i.e. its ability to return to normal operating conditions after disturbances. Lack of stability may compromise the reliable power supply and result in cascading blackouts in the most dramatic scenarios. The key intellectual merit of the project will be demonstrated through the development of a theoretical foundation for the problem of stability assessment of future power grids with high levels of renewable energy penetration. Interdisciplinary team of researchers from 3 US institutions will bring in cutting edge innovations from a number of fields like power systems dynamics and control, numerical algebraic geometry, and nonlinear systems in order to develop the computational tools to analyze the highly nonlinear dynamic behaviors and to certify stability/feasibility of operating points in the next generation power grids. From broader impact perspective the project addresses some of the most difficult and important challenges of modern society. The technology transfer of the results to public and private companies will provide direct benefit to the society by providing new open source tools for better economic decision making, protection of national security and informing of public policy. Other broader impacts include but are not limited to: 1) raising awareness of the stability related problems among applied mathematics and controls community, 2) Organization of a joint seminar between the applied mathematics and electrical engineering departments at University of Notre Dame, 3) Organization of special sessions and workshops on power system modeling and control in upcoming conferences, namely American Control Conference 2016 in Boston 4) engagement of underrepresented groups in research and education activities and development of custom tailored summer research projects for interested students. 5) Development of new graduate level specialized classes on advanced topics in smart grids.In heavily stressed operating conditions, the nonlinear interactions play a critical role in power system dynamics and its response to disturbances. Introduction of renewable generation will affect both the structure of operating points and their stability properties. Implicit assumptions in traditional stability analysis techniques developed for conventional hierarchical nature of power grid structure may be violated and the techniques may not be applicable to future power grids. The goal of this project is to develop a new generation of computationally tractable but engineering wise accurate approaches to help the operators to assess the stability of operating points in renewable-integrated power systems. More specifically, the project will develop new techniques for constructing Lyapunov functions-based stability certificates for large-scale power systems, and novel ways of representing the complicated switch-type nonlinearities in polynomial form. New generation of efficient and robust homotopy algorithms will be developed and applied to practical problems in power systems. PI Chakrabortty and his group will be responsible for the development and validation of tractable but at the same time accurate dynamic models of power systems with renewable generations. The group of Turitsyn and Vu will be studying and exploring new approaches to construction of stability certificates for large scale dynamic model of power systems, and will be analyzing the nonlinear sensitivities of operating point with respect to generation levels of renewable generators and other uncertain parameters. PI Mehta will be leading the effort on the advancement of recently developed Numerical Polynomial Homotopy Continuation algorithms that will be used for the analysis of operating conditions of nonlinear systems developed in the first two thrusts.
合作研究:清洁可再生能源高渗透率电力系统稳定性评估的计算方法随着可再生能源和分布式能源渗透率的不断提高以及数百万个活动端点的存在,电网目前正在经历架构革命。这些新颖组件的引入会影响系统的稳定性,即系统在受到干扰后恢复到正常运行条件的能力。缺乏稳定性可能会损害可靠的电力供应,并在最严重的情况下导致连锁停电。该项目的关键智力优势将通过为可再生能源高渗透率的未来电网的稳定性评估问题奠定理论基础来展示。来自美国三个机构的跨学科研究团队将引入电力系统动力学与控制、数值代数几何和非线性系统等多个领域的前沿创新成果,以开发计算工具来分析高度非线性动态行为并验证下一代电网工作点的稳定性/可行性。从更广泛的影响角度来看,该项目解决了现代社会一些最困难和最重要的挑战。将成果技术转让给公共和私营公司,将为更好的经济决策、保护国家安全和通报公共政策提供新的开源工具,从而为社会带来直接利益。其他更广泛的影响包括但不限于:1)提高应用数学和控制界对稳定性相关问题的认识,2)在圣母大学应用数学和电气工程系之间组织联合研讨会,3)组织在即将召开的会议(即 2016 年波士顿美国控制会议)中举办关于电力系统建模和控制的特别会议和研讨会 4) 让代表性不足的群体参与研究和教育活动,并为感兴趣的学生开发定制的夏季研究项目。 5) 开发关于智能电网高级主题的新研究生水平专业课程。在高负荷运行条件下,非线性相互作用在电力系统动力学及其对扰动的响应中发挥着关键作用。可再生能源发电的引入将影响运行点的结构及其稳定性。为电网结构的传统分层性质而开发的传统稳定性分析技术中的隐含假设可能会被违反,并且该技术可能不适用于未来的电网。该项目的目标是开发新一代计算上易于处理但工程明智的准确方法,以帮助运营商评估可再生能源集成电力系统中工作点的稳定性。更具体地说,该项目将开发为大型电力系统构建基于李亚普诺夫函数的稳定性证书的新技术,以及以多项式形式表示复杂开关型非线性的新方法。将开发新一代高效、鲁棒的同伦算法并将其应用于电力系统的实际问题。 PI Chakrabortty 和他的团队将负责开发和验证可再生发电电力系统的易于处理但同时又准确的动态模型。 Turitsyn和Vu的小组将研究和探索构建电力系统大规模动态模型稳定性证书的新方法,并将分析工作点相对于可再生发电机发电水平和其他不确定参数的非线性敏感性。 PI Mehta 将领导最近开发的数值多项式同伦连续算法的工作,该算法将用于分析前两个项目中开发的非线性系统的运行条件。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jonathan Hauenstein其他文献

Jonathan Hauenstein的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jonathan Hauenstein', 18)}}的其他基金

Collaborative Research: AF: Small: Real Solutions of Polynomial Systems
合作研究:AF:小:多项式系统的实数解
  • 批准号:
    2331400
  • 财政年份:
    2024
  • 资助金额:
    $ 5.42万
  • 项目类别:
    Standard Grant
International Congress on Mathematical Software (ICMS 2018)
国际数学软件大会 (ICMS 2018)
  • 批准号:
    1819006
  • 财政年份:
    2018
  • 资助金额:
    $ 5.42万
  • 项目类别:
    Standard Grant
AF: Small: Collaborative Research: Certification for Semi-Algebraic Sets with Applications
AF:小:协作研究:半代数集及其应用的认证
  • 批准号:
    1812746
  • 财政年份:
    2018
  • 资助金额:
    $ 5.42万
  • 项目类别:
    Standard Grant
Workshop on Software and Applications of Numerical Algebraic Geometry
数值代数几何软件及应用研讨会
  • 批准号:
    1547743
  • 财政年份:
    2015
  • 资助金额:
    $ 5.42万
  • 项目类别:
    Standard Grant
SI2-SSE: Collaborative Proposal: Symbolic-Numeric Approaches to Polynomials
SI2-SSE:协作提案:多项式的符号数值方法
  • 批准号:
    1440583
  • 财政年份:
    2014
  • 资助金额:
    $ 5.42万
  • 项目类别:
    Standard Grant
SI2-SSE: Collaborative Proposal: Symbolic-Numeric Approaches to Polynomials
SI2-SSE:协作提案:多项式的符号数值方法
  • 批准号:
    1460032
  • 财政年份:
    2014
  • 资助金额:
    $ 5.42万
  • 项目类别:
    Standard Grant
Computational Methods in Numerical Algebraic Geometry
数值代数几何的计算方法
  • 批准号:
    1114336
  • 财政年份:
    2011
  • 资助金额:
    $ 5.42万
  • 项目类别:
    Standard Grant

相似国自然基金

基于多精度计算机试验的航空设备多函数型响应质量设计研究
  • 批准号:
    72371128
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
对两类椭圆型随机偏微分方程数值计算的研究
  • 批准号:
    12301497
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于深度学习计算重构的环境扰动免疫型马赛克片上光谱成像技术研究
  • 批准号:
    62305250
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
超网驱动的学习型进化计算多模态优化研究
  • 批准号:
    62306225
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于机器学习和相图计算耦合方法的γ′相强化型高熵高温合金的加速设计及其性能研究
  • 批准号:
    52371007
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: CIF: Medium: Snapshot Computational Imaging with Metaoptics
合作研究:CIF:Medium:Metaoptics 快照计算成像
  • 批准号:
    2403122
  • 财政年份:
    2024
  • 资助金额:
    $ 5.42万
  • 项目类别:
    Standard Grant
Collaborative Research: CyberTraining: Pilot: PowerCyber: Computational Training for Power Engineering Researchers
协作研究:Cyber​​Training:试点:PowerCyber​​:电力工程研究人员的计算培训
  • 批准号:
    2319895
  • 财政年份:
    2024
  • 资助金额:
    $ 5.42万
  • 项目类别:
    Standard Grant
Collaborative Research: Merging Human Creativity with Computational Intelligence for the Design of Next Generation Responsive Architecture
协作研究:将人类创造力与计算智能相结合,设计下一代响应式架构
  • 批准号:
    2329759
  • 财政年份:
    2024
  • 资助金额:
    $ 5.42万
  • 项目类别:
    Standard Grant
Collaborative Research: Merging Human Creativity with Computational Intelligence for the Design of Next Generation Responsive Architecture
协作研究:将人类创造力与计算智能相结合,设计下一代响应式架构
  • 批准号:
    2329760
  • 财政年份:
    2024
  • 资助金额:
    $ 5.42万
  • 项目类别:
    Standard Grant
Collaborative Research: CyberTraining: Pilot: PowerCyber: Computational Training for Power Engineering Researchers
协作研究:Cyber​​Training:试点:PowerCyber​​:电力工程研究人员的计算培训
  • 批准号:
    2319896
  • 财政年份:
    2024
  • 资助金额:
    $ 5.42万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了