Ion dynamics and charge transport in ultrathin films of polymerized ionic liquids

聚合离子液体超薄膜中的离子动力学和电荷传输

基本信息

  • 批准号:
    1508394
  • 负责人:
  • 金额:
    $ 34.8万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-07-01 至 2018-06-30
  • 项目状态:
    已结题

项目摘要

NON-TECHNICAL SUMMARY:The rising energy needs of the modern society continue to provide a significant impetus for extensive research and development in energy storage devices. Polymer electrolytes play a key role in these devices. This project will employ specialized electrical experiments to gain deeper understanding of the impact of the confinement of the molecules within extrememly thin films and their interactions with surfaces on their electrical and mechanical properties. This fundamental understanding will be useful in guiding the design of novel functional polymer electrolytes with desirable properties for sustainable technologies, including polymerized ionic liquids for portable batteries, solar cells, fuel cells, actuators, field-effect transistors, and electrochromic devices. The information regarding the interplay between molecular structure, polymer/substrate interactions, ion transport and dynamics in thin films of polymerized ionic liquids gained from this work will be beneficial not only within the field of ionic liquids but also to the polymer science and engineering scientific communities. An important component of this project also involves several integrated educational activities. The project will contribute to training and education of specialists in polymer nanotechnology and materials science through active involvement of graduate and undergraduate students in this research. This integrated research/educational program also emphasizes work with underrepresented groups and outreach to K-12 students.TECHNICAL SUMMARY:Polymerized ionic liquids are a novel class of functional polymers that combine the unique physicochemical properties of molecular ionic liquids (e.g. wide electrochemical windows, negligible vapor pressures, and ionic conduction) with the outstanding mechanical characteristics of polymers. These materials are promising for a variety of applications including dye-sensitized solar cells, portable batteries, actuators, field-effect transistors and electrochromic devices. Many of these technologies involve the use of polymerized ionic liquids confined in one dimension as thin films. However, fundamental understanding of the impact of one-dimensional nanoscale confinement on ion transport and dynamics in polymerized ionic liquids is still very limited. The main goal of this research is to unravel the mechanisms controlling charge transport and ion dynamics in ultrathin films of polymerized ionic liquids. The project will focus on: (i) investigating the impact of film thickness on ion conduction and dynamics in polymerized ionic liquids, (ii) unraveling the role of the polymer/substrate interactions on ion transport and dynamics, and (iii) investigating the role of chemical composition/structure on ion dynamics and charge transport in thin films of polymerized ionic liquids. The research will primarialy utilize broadband dielectric spectroscopy measurements of thin polymer films using a recently developed electrode configuration featuring silica nanostructures and an air gap. The detailed fundamental understanding of the impact of one-dimensional confinement on ion transport and dynamics gained in these studies will provide a firm scientific basis for design of more efficient polymer electrolytes suitable for potential use in electrochemical power sources and devices.
非技术摘要:现代社会的能源需求不断提高,继续为储能设备的广泛研究和开发提供了重要的动力。聚合物电解质在这些设备中起关键作用。该项目将采用专门的电气实验,以更深入地了解分子在极端薄膜中的限制的影响及其在其电气和机械性能上与表面的相互作用。这种基本的理解将有助于指导具有可持续技术的理想特性的新型功能聚合物电解质,包括用于便携式电池,太阳能电池,燃料电池,燃料电池,致动器,现场效应晶体管和电染色器设备的聚合离子液体。有关分子结构,聚合物/底物相互作用,离子传输和动力学之间相互作用的信息,从这项工作中获得的聚合离子液体的薄膜中,不仅在离子液体领域,而且对聚合物科学和工程科学群落都有益。该项目的重要组成部分还涉及几项综合的教育活动。该项目将通过积极参与研究生和本科生参与这项研究的聚合物纳米技术和材料科学的培训和教育。这项综合研究/教育计划还强调了代表性不足的群体和向K-12学生进行宣传的工作。技术摘要:聚合的离子液体是一类新型的功能性聚合物,它们结合了分子离子液体的独特物理化学特性(例如,范围广泛的电化学液体的特征,均可降低了vapor prolim and ionic and ictions and ionic and ion ictions and ion ictions and ion ictions and ion ictions and ion ictions and ion ictions and ion iction ion icion and ion。这些材料对于各种应用都是有希望的,包括染料敏化的太阳能电池,便携式电池,执行器,野外效应晶体管和电染色器设备。这些技术中的许多涉及使用限制在一个尺寸的薄膜的聚合离子液体的使用。然而,对一维纳米级限制对聚合离子液体中离子运输和动力学的影响的基本了解仍然非常有限。这项研究的主要目的是阐明聚合离子液体超薄膜中控制电荷传输和离子动力学的机制。该项目将重点介绍:(i)研究膜厚度对聚合离子液体离子传导和动态的影响,(ii)阐明聚合物/底物相互作用对离子传输和动力学的作用,以及(iii)研究化学组成/结构对薄膜中化学组成/结构的作用,对薄膜中的薄膜中的电荷转运。这项研究将使用新近开发的电极构型对薄聚合物膜进行宽带介电​​光谱测量,该构型具有二氧化硅纳米结构和气隙。对这些研究中一维限制对离子运输和动力学的影响的详细基本理解将为设计更有效的聚合物电解质的设计提供牢固的科学基础,适合于在电化学能源和设备中潜在使用。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Charge Transport in Imidazolium-Based Homo- and Triblock Poly(ionic liquid)s
  • DOI:
    10.1021/acs.macromol.8b02143
  • 发表时间:
    2019-01-22
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Mapesa, Emmanuel U.;Chen, Mingtao;Sangoro, Joshua R.
  • 通讯作者:
    Sangoro, Joshua R.
Ion Transport in Glassy Polymerized Ionic Liquids: Unraveling the Impact of the Molecular Structure
  • DOI:
    10.1021/acs.macromol.8b01273
  • 发表时间:
    2019-01-08
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Heres, Maximilian;Cosby, Tyler;Sangoro, Joshua
  • 通讯作者:
    Sangoro, Joshua
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Joshua Sangoro其他文献

Joshua Sangoro的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Joshua Sangoro', 18)}}的其他基金

CAS-Climate: Ion and Interfacial Dynamics in Polymerized Ionic Liquids
CAS-Climate:聚合离子液体中的离子和界面动力学
  • 批准号:
    2327018
  • 财政年份:
    2023
  • 资助金额:
    $ 34.8万
  • 项目类别:
    Standard Grant
CAS-Climate: Ion and Interfacial Dynamics in Polymerized Ionic Liquids
CAS-Climate:聚合离子液体中的离子和界面动力学
  • 批准号:
    2221757
  • 财政年份:
    2022
  • 资助金额:
    $ 34.8万
  • 项目类别:
    Standard Grant
Interfacial Dynamics in Ultrathin Polymer Films
超薄聚合物薄膜中的界面动力学
  • 批准号:
    1905597
  • 财政年份:
    2019
  • 资助金额:
    $ 34.8万
  • 项目类别:
    Standard Grant
CAREER: Mesoscale Aggregation and Interfacial Dynamics in Ionic Liquids
职业:离子液体中的介观聚集和界面动力学
  • 批准号:
    1753282
  • 财政年份:
    2018
  • 资助金额:
    $ 34.8万
  • 项目类别:
    Continuing Grant

相似国自然基金

神经元模型中混合模式振荡诱导机制的动力学研究
  • 批准号:
    12302069
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
准一维铬砷基超导材料电子关联动力学性质的第一性原理研究
  • 批准号:
    12304175
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
柔性钙钛矿室内光伏器件中“微-宏观”应力调谐及其载流子复合动力学研究
  • 批准号:
    62305261
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
摇摆桥梁三维动力学行为及地震响应规律研究
  • 批准号:
    52308494
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
桃果实采后冷害质地劣变的细胞壁果胶动力学机制研究
  • 批准号:
    32302155
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Structural dynamics of voltage-gated ion channels and their implications for ion permeation and drug modulation
电压门控离子通道的结构动力学及其对离子渗透和药物调节的影响
  • 批准号:
    10583283
  • 财政年份:
    2023
  • 资助金额:
    $ 34.8万
  • 项目类别:
Structural Basis of Coupling and Dynamics in K+ Channels
K 通道耦合和动力学的结构基础
  • 批准号:
    10682241
  • 财政年份:
    2023
  • 资助金额:
    $ 34.8万
  • 项目类别:
Dynamics and mechanism of sodium-dependent carboxylate transporters
钠依赖性羧酸转运蛋白的动力学和机制
  • 批准号:
    10577283
  • 财政年份:
    2023
  • 资助金额:
    $ 34.8万
  • 项目类别:
Assessing the Biomolecular Structures that Result from Electrospray Ionization
评估电喷雾电离产生的生物分子结构
  • 批准号:
    10712440
  • 财政年份:
    2023
  • 资助金额:
    $ 34.8万
  • 项目类别:
K+ channel structural dynamics landscape: from selectivity to gating
K 通道结构动力学景观:从选择性到门控
  • 批准号:
    10663554
  • 财政年份:
    2023
  • 资助金额:
    $ 34.8万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了