Collaborative Research: CSEDI -Understanding Si and Fe differentiation in Earth?s mantle and core through experimental and theoretical research in geochemistry and mineral physics
合作研究:CSEDI - 通过地球化学和矿物物理的实验和理论研究了解地幔和地核中的硅和铁分异
基本信息
- 批准号:1503084
- 负责人:
- 金额:$ 21.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-04-15 至 2019-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
To first order, the Earth is divided into three concentric shells of different nature: the metallic core, the rocky mantle, and the fluid atmosphere/hydrosphere. While samples are available from the mantle and atmosphere/hydrosphere, the nature and composition of the core remain poorly understood. In particular, the core is known to be less dense than pure iron-nickel alloy, indicating that another light element is present in the core, possibly oxygen, silicium, or sulfur. The conditions (pressure and temperature) under which Earth's core formed and the nature of the light element in Earth's core are two major unresolved questions in planetary sciences. Because no core samples are directly available for study, scientists rely on remote seismic observations or other indirect methods to address those questions. In the proposed work, the approaches of geochemistry (the chemistry of the Earth), mineral physics (solid state physics applied to natural materials), and computational techniques will be combined to set limits on the temperature condition during core formation and the nature of the light element in Earth's core. This will be achieved by examining the extent to which different isotopic flavors of silicon and iron were partitioned between metal and silicate when the core formed. The work will involve synthesizing minerals in the laboratory and compressing them to pressure conditions relevant to the deep Earth by confining the samples between two diamonds, measuring the strength of the iron bonds in those minerals at a synchrotron source that produces very energetic X-rays, and examining, through computer calculations, the behavior of matter under high pressure and temperature. This work can impact many fields of science, ranging from the origin of Earth's dynamo to characterization of extrasolar planets through measurement of their mass. All PIs will actively engage in training and educating graduate students, undergraduate students, and postdocs in the proposed research projects. The PIs will continue developing SciPhon, a user-friendly, free software for NRIXS data reduction. This program will be made available to various communities studying different aspects of NRIXS, including geochemistry, mineral physics, material sciences, condensed matter physics, and biochemistry. All PIs will be actively involved in outreach programs including the UTeach Outreach Program that conducts academic summer camps for underrepresented K-12 kids from the Austin and southwest Texas area. The mass of the Earth and its accretion history are such that core-mantle differentiation was probably unavoidable but considerable uncertainties remain as to how and when this took place. Our limited understanding of this major event arises from our lack of sampling of Earth's deep interior. Scientists have devised indirect approaches to address this shortcoming by relying on (1) mineral physics experiments to reproduce the high pressure-temperature conditions prevailing in Earth's interior, (2) theoretical calculations to mimic those same conditions, and (3) geochemical measurements of the composition of mantle rocks to search for telltale signatures of core formation. These strongly interweaved approaches have led to significant progress but first-order unanswered questions remain, such as under what pressure-temperature conditions did the core form, what is the nature of the light element in the core, and did core formation fractionate Si and Fe isotopes. Terrestrial basalts have non-chondritic Si and Fe isotopic compositions, which could reflect partitioning of these elements into the core, although other interpretations exist. The investigators propose to establish Si and Fe isotope fractionation factors using high-pressure nuclear resonant inelastic X-ray scattering (NRIXS) and theoretical calculations at deep mantle conditions via collaborative approaches in geochemistry (Dauphas), theoretical ab initio calculations (Wentzcovitch), and experimental mineral physics (Lin). The derived force constants of Si and Fe bonds in basaltic glasses, lower-mantle minerals (bridgmanite and ferropericlase), and Fe alloys will allow us to build a deep-Earth geochemical model to evaluate if the specific Si and Fe isotopic compositions of the silicate Earth reflect core partitioning, and if they do, put constraints on important aspects of core formation such as temperature or the presence of Si as a light element in the core. The experimental results will serve as a benchmark for ab initio calculations of Si and Fe isotopic fractionation between relevant metal and silicate phases at high pressure and temperature. The theoretical work will in turn guide and refine the experimental and geochemical modelling efforts, focusing in particular on nuclear resonant measurements, force constant derivations, anharmonic and spin crossover effects. The exchanges and feedbacks between geochemists and experimental and theoretical physicists involved in this project will provide a holistic view of Si and Fe isotopic fractionation during core formation.
首先,地球被分为三个不同性质的同心壳:金属核、岩石地幔和流体大气层/水圈。虽然可以从地幔和大气/水圈中获取样本,但对地核的性质和组成仍然知之甚少。特别是,已知核心的密度低于纯铁镍合金,这表明核心中存在另一种轻元素,可能是氧、硅或硫。地核形成的条件(压力和温度)和地核中轻元素的性质是行星科学中尚未解决的两个主要问题。由于没有岩心样本可直接用于研究,科学家依靠远程地震观测或其他间接方法来解决这些问题。在拟议的工作中,将结合地球化学(地球的化学)、矿物物理学(应用于天然材料的固态物理学)和计算技术的方法,对地核形成过程中的温度条件和地核的性质设定限制。地核中的轻元素。这将通过检查核心形成时硅和铁的不同同位素在金属和硅酸盐之间分配的程度来实现。这项工作将涉及在实验室合成矿物,并通过将样品限制在两颗钻石之间,将它们压缩到与地球深处相关的压力条件,在产生高能 X 射线的同步加速器源上测量这些矿物中铁键的强度,并通过计算机计算检查物质在高压和高温下的行为。这项工作可以影响许多科学领域,从地球发电机的起源到通过测量太阳系外行星的质量来表征其特征。 所有PI将积极参与拟议研究项目中的研究生、本科生和博士后的培训和教育。 PI 将继续开发 SciPhon,这是一款用户友好的免费软件,用于 NRIXS 数据缩减。该计划将提供给研究 NRIXS 不同方面的各个社区,包括地球化学、矿物物理学、材料科学、凝聚态物理学和生物化学。 所有 PI 都将积极参与外展项目,包括 UTeach 外展项目,该项目为来自奥斯汀和德克萨斯州西南部地区代表性不足的 K-12 孩子举办学术夏令营。 地球的质量及其吸积历史使得核幔分异可能是不可避免的,但关于这种分异如何以及何时发生仍然存在相当大的不确定性。我们对这一重大事件的了解有限,因为我们缺乏对地球深层内部的采样。科学家们设计了间接方法来解决这一缺点,依靠(1)矿物物理实验来重现地球内部普遍存在的高压-温度条件,(2)模拟相同条件的理论计算,以及(3)地球化学测量地幔岩石的成分,以寻找地核形成的明显特征。这些紧密交织的方法已经取得了重大进展,但仍然存在一些未解答的问题,例如核心在什么压力-温度条件下形成,核心中轻元素的性质是什么,以及核心形成是否分馏了硅和铁同位素。陆地玄武岩具有非球粒状硅和铁同位素组成,这可能反映了这些元素在核心中的分配,尽管存在其他解释。研究人员建议利用高压核共振非弹性 X 射线散射 (NRIXS) 和深部地幔条件下的理论计算,通过地球化学 (Dauphas)、理论从头计算 (Wentzcovitch) 和理论计算的协作方法来建立 Si 和 Fe 同位素分馏因子。实验矿物物理(林)。玄武岩玻璃、下地幔矿物(桥锰石和铁方镁石)和 Fe 合金中 Si 和 Fe 键的导出力常数将使我们能够建立地球深部地球化学模型,以评估硅酸盐的特定 Si 和 Fe 同位素组成是否地球反映了核心的划分,如果确实如此,就会对核心形成的重要方面施加限制,例如温度或核心中作为轻元素的硅的存在。实验结果将作为高压和高温下相关金属和硅酸盐相之间的硅和铁同位素分馏从头计算的基准。理论工作将反过来指导和完善实验和地球化学建模工作,特别关注核共振测量、力常数推导、非谐波和自旋交叉效应。参与该项目的地球化学家以及实验和理论物理学家之间的交流和反馈将提供岩心形成过程中硅和铁同位素分馏的整体视图。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Renata Wentzcovitch其他文献
Elasticity and acoustic velocities of $delta$-AlOOH at extreme conditions: a methodology assessment
极端条件下 $delta$-AlOOH 的弹性和声速:方法评估
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
C. Luo;Yang Sun;Renata Wentzcovitch - 通讯作者:
Renata Wentzcovitch
Renata Wentzcovitch的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Renata Wentzcovitch', 18)}}的其他基金
International Workshop on Recent Developments in Electronic Structure
电子结构最新发展国际研讨会
- 批准号:
2225459 - 财政年份:2022
- 资助金额:
$ 21.5万 - 项目类别:
Standard Grant
CSEDI Collaborative Research: Understanding what we see in the lower mantle - mineral physics interpretation of seismic tomographic images
CSEDI 合作研究:了解我们在下地幔中看到的东西 - 地震层析成像的矿物物理解释
- 批准号:
2000850 - 财政年份:2020
- 资助金额:
$ 21.5万 - 项目类别:
Continuing Grant
Collaborative Research: Thermodynamics and thermoelasticity of iron-bearing phases
合作研究:含铁相的热力学和热弹性
- 批准号:
1918126 - 财政年份:2019
- 资助金额:
$ 21.5万 - 项目类别:
Continuing Grant
Collaborative Project: EaGER - CSEDI: Towards an integrated view of deep mantle structure, temperature, and composition
合作项目:EaGER - CSEDI:对深部地幔结构、温度和成分的综合看法
- 批准号:
1341862 - 财政年份:2013
- 资助金额:
$ 21.5万 - 项目类别:
Standard Grant
Theory of thermoelastic properties of iron bearing minerals
含铁矿物的热弹性理论
- 批准号:
1319361 - 财政年份:2013
- 资助金额:
$ 21.5万 - 项目类别:
Standard Grant
CAREER: Efficient DFT-based computational approach for correlated systems
职业:相关系统的基于 DFT 的高效计算方法
- 批准号:
1151738 - 财政年份:2012
- 资助金额:
$ 21.5万 - 项目类别:
Continuing Grant
Quantum Mechanical Modeling of Major Mantle Materials
主要地幔材料的量子力学模拟
- 批准号:
1019853 - 财政年份:2010
- 资助金额:
$ 21.5万 - 项目类别:
Continuing Grant
MSA Short Course: Theoretical and Computational Methods in Mineral Physics - Geophysical Applications
MSA 短期课程:矿物物理理论和计算方法 - 地球物理应用
- 批准号:
0952600 - 财政年份:2009
- 资助金额:
$ 21.5万 - 项目类别:
Standard Grant
CSEDI: Integrated Study of Water (H2O) in the Mantle: Processes and Signature
CSEDI:地幔中水 (H2O) 的综合研究:过程和特征
- 批准号:
0757903 - 财政年份:2008
- 资助金额:
$ 21.5万 - 项目类别:
Continuing Grant
Collaborative Research: Quantum Mechanical Modeling of Major Mantle Materials
合作研究:主要地幔材料的量子力学模拟
- 批准号:
0635990 - 财政年份:2007
- 资助金额:
$ 21.5万 - 项目类别:
Continuing Grant
相似国自然基金
基于FRET受体上升时间的单分子高精度测量方法研究
- 批准号:22304184
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
脂质多聚复合物mRNA纳米疫苗的构筑及抗肿瘤治疗研究
- 批准号:52373161
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
屏障突破型原位线粒体基因递送系统用于治疗Leber遗传性视神经病变的研究
- 批准号:82304416
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
细胞硬度介导口腔鳞癌细胞与CD8+T细胞间力学对话调控免疫杀伤的机制研究
- 批准号:82373255
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
乙酸钙不动杆菌上调DUOX2激活PERK/ATF4内质网应激在炎症性肠病中的作用机制研究
- 批准号:82300623
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: CSEDI: Integrating Seismic Anisotropy, Mantle Flow, and Rock Deformation in Subduction Zone Settings
合作研究:CSEDI:在俯冲带环境中整合地震各向异性、地幔流和岩石变形
- 批准号:
2154072 - 财政年份:2022
- 资助金额:
$ 21.5万 - 项目类别:
Continuing Grant
Collaborative Research: CSEDI: Integrating Seismic Anisotropy, Mantle Flow, and Rock Deformation in Subduction Zone Settings
合作研究:CSEDI:在俯冲带环境中整合地震各向异性、地幔流和岩石变形
- 批准号:
2153688 - 财政年份:2022
- 资助金额:
$ 21.5万 - 项目类别:
Continuing Grant
Collaborative Research: CSEDI: Integrating Seismic Anisotropy, Mantle Flow, and Rock Deformation in Subduction Zone Settings
合作研究:CSEDI:在俯冲带环境中整合地震各向异性、地幔流和岩石变形
- 批准号:
2153910 - 财政年份:2022
- 资助金额:
$ 21.5万 - 项目类别:
Continuing Grant
CSEDI Collaborative Research: The nature and timing of Earth's accretion
CSEDI 合作研究:地球吸积的性质和时间
- 批准号:
2054884 - 财政年份:2021
- 资助金额:
$ 21.5万 - 项目类别:
Standard Grant
CSEDI Collaborative Research: The Origins and Implications of Inner Core Seismic Anisotropy
CSEDI合作研究:内核地震各向异性的起源和意义
- 批准号:
2054964 - 财政年份:2021
- 资助金额:
$ 21.5万 - 项目类别:
Continuing Grant