Neurotechnologically inspired multilayered polymer electrolyte membranes to harness ion concentration gradient for energy restoration
受神经技术启发的多层聚合物电解质膜利用离子浓度梯度进行能量恢复
基本信息
- 批准号:1502543
- 负责人:
- 金额:$ 39.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-07-01 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
NON-TECHNICAL SUMMARY:The main concept of this project emerges from the neuronal circuits of the body as paradigms for novel types of solid-state batteries based on mechanisms operative in neurotransmission. The brain controls various functions of the body through the nervous system composed of neuronal networks. Neurons are excitable, individual cells making specific contacts with other surrounding neurons. Their signal-processing is empowered by ion osmosis, driven by ion concentration gradients across the cell membrane which regulates passage of selective ions via ionic channels. The concept of polymer-based solid lithium ion batteries to be explored in this project shares this common origin with neuronal networks, as it operates by harnessing ion concentration gradients across the proposed "multilayered polymer electrolyte membranes" (MLPEM) which contain different ion concentrations in each layer, thus generating an internal voltage. The proposed concentration-gradient approach to battery design is conceptually similar to the neuronal operation of an electric eel, whereby series of thousands of innervated and non-innervated cell membranes are capable of generating internal voltages of about 600 volts to fend off predators. Just as the neural network of the electric eel allows this voltage to be regenerated, the proposed MLPEM batteries could be rechargeable on their own. The working principle of the self-rechargeable battery in this project is that the mobile lithium cation will be transported to the cathode during discharging, but it will revert back to the anode during battery resting, thereby restoring the ion concentration gradient and hence a voltage. This project will explore these aspects by synthesizing and processing multilayered polymer electrolyte membranes allowing ionic concentration gradients, evaluate and attempt to optimize the ionic conductivity, the thermal and electrochemical stability, and the mechanical properties of the battery. If successful, this project may benefit society by leading to novel lightweight, shape-conformable, thermally and electrochemically stable, flame-retardant, self-rechargeable batteries. The project also includes integration of research and education through interdisciplinary training of students and outreach activities.TECHNICAL SUMMARY:This project is inspired by the neuronal circuits of the body as paradigms for novel types of solid-state batteries based on mechanisms operative in neurotransmission, e.g. the generation of high voltages by electric eels followed by internal recharging. It focuses on five thrust areas: (1) Development of all-solid-state multilayered polymer electrolyte membranes (MLPEM) having specific chemical and electrochemical compatibility with electrodes for enhancing energy-storage capacity. MLPEM will be fabricated by stacking individual polymer electrolyte (PEM) layers having different ion populations by photopolymerizing network-precursor (poly(ethylene glycol) diacrylate)/solid plasticizer (succinonitrile)/ionic salt (lithium bis-trifluorosulfonylimide). The ion concentration gradient thus produced in MLPEM will create potential differences across the membrane interfaces, thereby affording self-rechargeability of the battery. (2) Fabrication of directionally aligned phase-separated domains having various concentration gradients via holographic photopolymerization-induced phase separation in multicomponent solid electrolytes containing plasticizer and modifiers as a means of creating networks of micro-electrolyte cells. (3) Synthesis of PEM additives such as amido-carbonyl carbamate and amido-carbamate to prevent uncontrolled solid electrolyte interface formation on electrodes. (4) Grafting of poly(ethylene glycol) diamine to multiwall carbon nanotube (MWCNT) followed by end-capped reaction with carbamate derivatives to improve interface compatibility of MLPEM with carbonaceous anode and concurrently increase in ionic conductivity. (5) Modification of MWCNT surface by grafting of lithiated PEG-chains and/or arborescent PEG to raise lithium ion storage capacity and provide separate pathways for electron and ion conductions. The network of lithiated arborescent hyperbranched PEG resembles a neuronal network structurally and functionally. The ion conductivity and mobility will be determined by AC impedance, solid-state NMR, and Raman spectroscopy. Electrochemical stability will be evaluated by means of cyclic voltammetry and galvanostatic charge/discharge cycling in half-cell configurations. By virtue of the self-restored potential difference between the electrodes afforded by the ion concentration gradient of MLPEM, the battery would be rechargeable in the rest state, thereby prolonging the battery life. The project includes integration of research and education through interdisciplinary training of students and outreach activities.
非技术摘要:该项目的主要概念源于身体的神经元回路,作为基于神经传递运作机制的新型固态电池的范例。 大脑通过神经元网络组成的神经系统控制身体的各种功能。神经元是可兴奋的单个细胞,与周围的其他神经元进行特定的接触。它们的信号处理是由离子渗透作用增强的,离子渗透作用是由跨细胞膜的离子浓度梯度驱动的,调节选择性离子通过离子通道的通过。 本项目要探索的基于聚合物的固体锂离子电池的概念与神经元网络有着共同的起源,因为它通过利用所提出的“多层聚合物电解质膜”(MLPEM)上的离子浓度梯度来工作,其中包含不同的离子浓度每层,从而产生内部电压。所提出的电池设计浓度梯度方法在概念上类似于电鳗的神经元操作,其中数千个受神经支配和非神经支配的细胞膜能够产生约 600 伏的内部电压以抵御捕食者。正如电鳗的神经网络允许再生电压一样,所提出的 MLPEM 电池也可以自行充电。 该项目中的自充电电池的工作原理是,在放电过程中,移动的锂阳离子将被输送到正极,但在电池闲置时,它将恢复到负极,从而恢复离子浓度梯度,从而恢复电压。该项目将通过合成和加工允许离子浓度梯度的多层聚合物电解质膜来探索这些方面,评估并尝试优化电池的离子电导率、热稳定性和电化学稳定性以及机械性能。 如果成功,该项目可能会通过生产新型轻质、形状一致、热稳定和电化学稳定、阻燃、自充电电池来造福社会。该项目还包括通过学生的跨学科培训和外展活动将研究和教育结合起来。技术摘要:该项目的灵感来自于身体的神经元回路,作为基于神经传递运作机制的新型固态电池的范例,例如神经元。电鳗产生高电压,然后进行内部充电。它重点关注五个重点领域:(1)开发与电极具有特定化学和电化学兼容性的全固态多层聚合物电解质膜(MLPEM),以增强储能能力。 MLPEM 将通过光聚合网络前体(聚(乙二醇)二丙烯酸酯)/固体增塑剂(丁二腈)/离子盐(双三氟磺酰亚胺锂)堆叠具有不同离子群的各个聚合物电解质(PEM)层来制造。 MLPEM 中产生的离子浓度梯度将在膜界面上产生电势差,从而提供电池的自充电能力。 (2)在含有增塑剂和改性剂的多组分固体电解质中,通过全息光聚合诱导的相分离制造具有各种浓度梯度的定向排列的相分离域,作为创建微电解质电池网络的手段。 (3)合成PEM添加剂,例如酰胺基羰基氨基甲酸酯和酰胺基氨基甲酸酯,以防止电极上不受控制的固体电解质界面形成。 (4)将聚乙二醇二胺接枝到多壁碳纳米管(MWCNT)上,然后与氨基甲酸酯衍生物进行封端反应,以改善MLPEM与碳质阳极的界面相容性,同时提高离子电导率。 (5)通过接枝锂化PEG链和/或树状PEG来修饰MWCNT表面,以提高锂离子存储容量并为电子和离子传导提供单独的途径。锂化树状超支化 PEG 网络在结构和功能上类似于神经元网络。离子电导率和迁移率将通过交流阻抗、固态核磁共振和拉曼光谱测定。将通过半电池配置中的循环伏安法和恒电流充电/放电循环来评估电化学稳定性。借助MLPEM的离子浓度梯度提供的电极之间的自恢复电位差,电池可以在静止状态下进行充电,从而延长电池寿命。该项目包括通过学生跨学科培训和外展活动将研究和教育结合起来。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thein Kyu其他文献
カンジウム触媒によるアリルシランと・-シリルエノンとの[3+2]環化付加反応
钪催化烯丙基硅烷与.-硅烯酮之间的[3+2]环加成反应
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Nadzrinahamin. A. Nazir;Hiroto Kudo;Tadatomi Nishikubo;Thein Kyu;岡本和紘,田村英祐,大江浩一 - 通讯作者:
岡本和紘,田村英祐,大江浩一
Impregnation of waterwheel supramolecules as proton carriers in Nafion-perfluorinated ionomer membranes
水车超分子作为质子载体在 Nafion 全氟化离聚物膜中的浸渍
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Nadzrinahamin. A. Nazir;Hiroto. Kudo;Tadatomib Nishikubo;Thein Kyu - 通讯作者:
Thein Kyu
液晶性オリゴチオフェンのナノ構造制御と電子機能-やわらかい有機半導体の開発
液晶低聚噻吩的纳米结构控制和电子功能-软有机半导体的开发
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Nadzrinahamin. A. Nazir;Hiroto Kudo;Tadatomi Nishikubo;Thein Kyu;岡本和紘,田村英祐,大江浩一;舟橋正浩 - 通讯作者:
舟橋正浩
A Comparative Study on Electrochemical Performance of Single versus Dual Networks in Lithium Metal/Polysulfide-Polyoxide Co-Network/Lithium Titanium Oxide Cathode
锂金属/多硫化物-多氧化物共网络/钛酸锂正极中单网络与双网络电化学性能的比较研究
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Hyunsang Lee;Jae;Thein Kyu - 通讯作者:
Thein Kyu
Thein Kyu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thein Kyu', 18)}}的其他基金
Free Standing Flexible Lithium-Ion Polymer Electrolyte Membranes formed by Photopolymerization
通过光聚合形成的自立式柔性锂离子聚合物电解质膜
- 批准号:
1161070 - 财政年份:2012
- 资助金额:
$ 39.9万 - 项目类别:
Continuing Grant
Photopolymerization Induced Phase Transitions & Evolution of Morphology Landscape in Holographic Polymer Dispersed Liquid Crystals and Photonic Cyrstals
光聚合诱导的相变
- 批准号:
0514942 - 财政年份:2005
- 资助金额:
$ 39.9万 - 项目类别:
Continuing Grant
Spatio-Temporal Emergence of Morphological Patterns in Liquid Crystalline Polymer and Rigid-Rod Polymer Systems during Solidification
液晶聚合物和刚性棒聚合物体系在凝固过程中形态模式的时空出现
- 批准号:
0209272 - 财政年份:2002
- 资助金额:
$ 39.9万 - 项目类别:
Standard Grant
Dynamics of Phase Separation and Mesophase Phase Transition in Liquid Crystal and Rigid-Rod Polymer Mixtures
液晶和刚性棒聚合物混合物中相分离和中间相相变的动力学
- 批准号:
9903519 - 财政年份:1999
- 资助金额:
$ 39.9万 - 项目类别:
Continuing Grant
Phase Equilibria and Self-Organization Behavior of Rigid-Rod Polymer Mixtures
刚性棒聚合物混合物的相平衡和自组织行为
- 批准号:
9529296 - 财政年份:1996
- 资助金额:
$ 39.9万 - 项目类别:
Continuing Grant
Biaxial Stretching of Ultra-High Strength Polyolefin Gel Films
超高强度聚烯烃凝胶薄膜的双向拉伸
- 批准号:
8713531 - 财政年份:1987
- 资助金额:
$ 39.9万 - 项目类别:
Continuing Grant
Biaxial Stretching of Ultrahigh Strength Polyolefinic Gel Films UHMWPE and UHMWPP
超高强度聚烯烃凝胶薄膜 UHMWPE 和 UHMWPP 的双向拉伸
- 批准号:
8519906 - 财政年份:1986
- 资助金额:
$ 39.9万 - 项目类别:
Standard Grant
相似海外基金
BAMBOO - Build scAled Modular Bamboo-inspired Offshore sOlar systems
BAMBOO - 构建规模化模块化竹子式海上太阳能系统
- 批准号:
10109981 - 财政年份:2024
- 资助金额:
$ 39.9万 - 项目类别:
EU-Funded
CAREER: Origami-inspired design for a tissue engineered heart valve
职业:受折纸启发的组织工程心脏瓣膜设计
- 批准号:
2337540 - 财政年份:2024
- 资助金额:
$ 39.9万 - 项目类别:
Continuing Grant
Convergence Accelerator Track M: Bio-Inspired Design of Robot Hands for Use-Driven Dexterity
融合加速器轨道 M:机器人手的仿生设计,实现使用驱动的灵活性
- 批准号:
2344109 - 财政年份:2024
- 资助金额:
$ 39.9万 - 项目类别:
Standard Grant
CAREER: Scalable Physics-Inspired Ising Computing for Combinatorial Optimizations
职业:用于组合优化的可扩展物理启发伊辛计算
- 批准号:
2340453 - 财政年份:2024
- 资助金额:
$ 39.9万 - 项目类别:
Continuing Grant
CAREER: SHF: Bio-Inspired Microsystems for Energy-Efficient Real-Time Sensing, Decision, and Adaptation
职业:SHF:用于节能实时传感、决策和适应的仿生微系统
- 批准号:
2340799 - 财政年份:2024
- 资助金额:
$ 39.9万 - 项目类别:
Continuing Grant