Neurotechnologically inspired multilayered polymer electrolyte membranes to harness ion concentration gradient for energy restoration
受神经技术启发的多层聚合物电解质膜利用离子浓度梯度进行能量恢复
基本信息
- 批准号:1502543
- 负责人:
- 金额:$ 39.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-07-01 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
NON-TECHNICAL SUMMARY:The main concept of this project emerges from the neuronal circuits of the body as paradigms for novel types of solid-state batteries based on mechanisms operative in neurotransmission. The brain controls various functions of the body through the nervous system composed of neuronal networks. Neurons are excitable, individual cells making specific contacts with other surrounding neurons. Their signal-processing is empowered by ion osmosis, driven by ion concentration gradients across the cell membrane which regulates passage of selective ions via ionic channels. The concept of polymer-based solid lithium ion batteries to be explored in this project shares this common origin with neuronal networks, as it operates by harnessing ion concentration gradients across the proposed "multilayered polymer electrolyte membranes" (MLPEM) which contain different ion concentrations in each layer, thus generating an internal voltage. The proposed concentration-gradient approach to battery design is conceptually similar to the neuronal operation of an electric eel, whereby series of thousands of innervated and non-innervated cell membranes are capable of generating internal voltages of about 600 volts to fend off predators. Just as the neural network of the electric eel allows this voltage to be regenerated, the proposed MLPEM batteries could be rechargeable on their own. The working principle of the self-rechargeable battery in this project is that the mobile lithium cation will be transported to the cathode during discharging, but it will revert back to the anode during battery resting, thereby restoring the ion concentration gradient and hence a voltage. This project will explore these aspects by synthesizing and processing multilayered polymer electrolyte membranes allowing ionic concentration gradients, evaluate and attempt to optimize the ionic conductivity, the thermal and electrochemical stability, and the mechanical properties of the battery. If successful, this project may benefit society by leading to novel lightweight, shape-conformable, thermally and electrochemically stable, flame-retardant, self-rechargeable batteries. The project also includes integration of research and education through interdisciplinary training of students and outreach activities.TECHNICAL SUMMARY:This project is inspired by the neuronal circuits of the body as paradigms for novel types of solid-state batteries based on mechanisms operative in neurotransmission, e.g. the generation of high voltages by electric eels followed by internal recharging. It focuses on five thrust areas: (1) Development of all-solid-state multilayered polymer electrolyte membranes (MLPEM) having specific chemical and electrochemical compatibility with electrodes for enhancing energy-storage capacity. MLPEM will be fabricated by stacking individual polymer electrolyte (PEM) layers having different ion populations by photopolymerizing network-precursor (poly(ethylene glycol) diacrylate)/solid plasticizer (succinonitrile)/ionic salt (lithium bis-trifluorosulfonylimide). The ion concentration gradient thus produced in MLPEM will create potential differences across the membrane interfaces, thereby affording self-rechargeability of the battery. (2) Fabrication of directionally aligned phase-separated domains having various concentration gradients via holographic photopolymerization-induced phase separation in multicomponent solid electrolytes containing plasticizer and modifiers as a means of creating networks of micro-electrolyte cells. (3) Synthesis of PEM additives such as amido-carbonyl carbamate and amido-carbamate to prevent uncontrolled solid electrolyte interface formation on electrodes. (4) Grafting of poly(ethylene glycol) diamine to multiwall carbon nanotube (MWCNT) followed by end-capped reaction with carbamate derivatives to improve interface compatibility of MLPEM with carbonaceous anode and concurrently increase in ionic conductivity. (5) Modification of MWCNT surface by grafting of lithiated PEG-chains and/or arborescent PEG to raise lithium ion storage capacity and provide separate pathways for electron and ion conductions. The network of lithiated arborescent hyperbranched PEG resembles a neuronal network structurally and functionally. The ion conductivity and mobility will be determined by AC impedance, solid-state NMR, and Raman spectroscopy. Electrochemical stability will be evaluated by means of cyclic voltammetry and galvanostatic charge/discharge cycling in half-cell configurations. By virtue of the self-restored potential difference between the electrodes afforded by the ion concentration gradient of MLPEM, the battery would be rechargeable in the rest state, thereby prolonging the battery life. The project includes integration of research and education through interdisciplinary training of students and outreach activities.
非技术摘要:该项目的主要概念来自人体的神经元电路,作为基于神经传递的机制的新型固态电池类型的范式。 大脑通过由神经元网络组成的神经系统控制人体的各种功能。神经元很兴奋,单个细胞与其他周围神经元进行了特定的接触。它们的信号处理是由离子渗透赋予的,这是由整个细胞膜跨离子浓度梯度驱动的,该梯度调节了通过离子通道的选择性离子的通过。 在该项目中要探索的基于聚合物的固体锂离子电池的概念与神经元网络共同起源,因为它是通过在提出的“多层聚合物电解质膜”(MLPEM)上利用离子浓度梯度运行的,因此,每层都包含不同的离子浓度,从而产生了内部的伏特。提出的电池设计浓度梯度方法在概念上类似于电鳗的神经元操作,该电池的操作是,一系列数千支神经支配和不扰动的细胞膜能够产生约600伏的内部电压以抵御掠食者。正如电鳗的神经网络允许再生该电压一样,提出的MLPEM电池可以单独充电。 该项目中可自我电力电池的工作原理是,放电期间将移动锂阳离子被运输到阴极,但在电池静止期间它将恢复回阳极,从而恢复离子浓度梯度,从而恢复电压。该项目将通过合成和处理多层聚合物电解质膜来探索这些方面,从而使离子浓度梯度,评估和尝试优化离子电导率,热化学稳定性和电池的机械性能。 如果成功的话,该项目可能会通过导致新颖的轻巧,可配合的,热化学和电化学稳定,耐火焰,可自我电压的电池来使社会受益。该项目还包括通过对学生的跨学科培训和外展活动整合研究和教育。技术摘要:该项目的灵感来自身体的神经元电路,作为基于神经接线的机制的新型固态电池类型的范式,例如。电鳗的高压产生,然后是内部充电。它着重于五个推力区域:(1)具有特定的化学和电化学兼容性与电极的特定化学和电化学兼容性,开发了全稳态多层聚合物电解质膜(MLPEM),以增强能量储存能力。 MLPEM将通过堆叠具有不同离子群的单个聚合物电解质(PEM)层来制造,该层通过光聚聚合网络 - 前体(聚(乙二醇)二氧二烯酸酯)/固体增塑剂(琥珀硝基)/离子盐/离子盐(Bis- trifluorosulfonylimimeliperide)。因此,在MLPEM中产生的离子浓度梯度将在整个膜界面上产生潜在的差异,从而提供电池的自我电解性。 (2)在含有增塑剂和修饰剂的多组分固体电解质中,通过全息光聚合诱导的相位浓度梯度的定向相分离结构域的制造,以创建微电解质细胞的网络。 (3)PEM添加剂(例如氨基氨基甲酸氨基酸氨基酸氨基酸氨基酸氨基酸氨基酸氨基酸甲酯和氨基甲酸酯)的合成,以防止电极上不受控制的固体电解质界面形成。 (4)将聚(乙二醇)二氨酸移植到多壁碳纳米管(MWCNT),然后与氨基甲酸酯衍生物进行终端反应,以提高MLPEM与碳质阳极的界面兼容性,并同时增加电导率。 (5)通过接枝木质链和/或树皮钉来修饰MWCNT表面,以提高锂离子存储能力,并为电子和离子电导提供单独的途径。岩石纤维超细胞的固有网络在结构和功能上类似于神经元网络。离子电导率和迁移率将由AC阻抗,固态NMR和拉曼光谱法确定。电化学稳定性将通过循环伏安法和半细胞构型中的循环伏安电荷/放电循环进行评估。借助MLPEM离子浓度梯度提供的电极之间的自调电势差,电池将在其余状态下可充电,从而延长电池寿命。该项目包括通过对学生的跨学科培训和外展活动整合研究和教育。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thein Kyu其他文献
カンジウム触媒によるアリルシランと・-シリルエノンとの[3+2]環化付加反応
钪催化烯丙基硅烷与.-硅烯酮之间的[3+2]环加成反应
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Nadzrinahamin. A. Nazir;Hiroto Kudo;Tadatomi Nishikubo;Thein Kyu;岡本和紘,田村英祐,大江浩一 - 通讯作者:
岡本和紘,田村英祐,大江浩一
Impregnation of waterwheel supramolecules as proton carriers in Nafion-perfluorinated ionomer membranes
水车超分子作为质子载体在 Nafion 全氟化离聚物膜中的浸渍
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Nadzrinahamin. A. Nazir;Hiroto. Kudo;Tadatomib Nishikubo;Thein Kyu - 通讯作者:
Thein Kyu
Highly conductive, flexible polymer electrolyte membrane based on poly(ethylene glycol) diacrylate-<em>co</em>-thiosiloxane network
- DOI:
10.1016/j.ssi.2018.05.006 - 发表时间:
2018-09-01 - 期刊:
- 影响因子:
- 作者:
Camilo Piedrahita;Victor Kusuma;Hunaid B. Nulwala;Thein Kyu - 通讯作者:
Thein Kyu
液晶性オリゴチオフェンのナノ構造制御と電子機能-やわらかい有機半導体の開発
液晶低聚噻吩的纳米结构控制和电子功能-软有机半导体的开发
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Nadzrinahamin. A. Nazir;Hiroto Kudo;Tadatomi Nishikubo;Thein Kyu;岡本和紘,田村英祐,大江浩一;舟橋正浩 - 通讯作者:
舟橋正浩
A Comparative Study on Electrochemical Performance of Single versus Dual Networks in Lithium Metal/Polysulfide-Polyoxide Co-Network/Lithium Titanium Oxide Cathode
锂金属/多硫化物-多氧化物共网络/钛酸锂正极中单网络与双网络电化学性能的比较研究
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Hyunsang Lee;Jae;Thein Kyu - 通讯作者:
Thein Kyu
Thein Kyu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thein Kyu', 18)}}的其他基金
Free Standing Flexible Lithium-Ion Polymer Electrolyte Membranes formed by Photopolymerization
通过光聚合形成的自立式柔性锂离子聚合物电解质膜
- 批准号:
1161070 - 财政年份:2012
- 资助金额:
$ 39.9万 - 项目类别:
Continuing Grant
Photopolymerization Induced Phase Transitions & Evolution of Morphology Landscape in Holographic Polymer Dispersed Liquid Crystals and Photonic Cyrstals
光聚合诱导的相变
- 批准号:
0514942 - 财政年份:2005
- 资助金额:
$ 39.9万 - 项目类别:
Continuing Grant
Spatio-Temporal Emergence of Morphological Patterns in Liquid Crystalline Polymer and Rigid-Rod Polymer Systems during Solidification
液晶聚合物和刚性棒聚合物体系在凝固过程中形态模式的时空出现
- 批准号:
0209272 - 财政年份:2002
- 资助金额:
$ 39.9万 - 项目类别:
Standard Grant
Dynamics of Phase Separation and Mesophase Phase Transition in Liquid Crystal and Rigid-Rod Polymer Mixtures
液晶和刚性棒聚合物混合物中相分离和中间相相变的动力学
- 批准号:
9903519 - 财政年份:1999
- 资助金额:
$ 39.9万 - 项目类别:
Continuing Grant
Phase Equilibria and Self-Organization Behavior of Rigid-Rod Polymer Mixtures
刚性棒聚合物混合物的相平衡和自组织行为
- 批准号:
9529296 - 财政年份:1996
- 资助金额:
$ 39.9万 - 项目类别:
Continuing Grant
Biaxial Stretching of Ultra-High Strength Polyolefin Gel Films
超高强度聚烯烃凝胶薄膜的双向拉伸
- 批准号:
8713531 - 财政年份:1987
- 资助金额:
$ 39.9万 - 项目类别:
Continuing Grant
Biaxial Stretching of Ultrahigh Strength Polyolefinic Gel Films UHMWPE and UHMWPP
超高强度聚烯烃凝胶薄膜 UHMWPE 和 UHMWPP 的双向拉伸
- 批准号:
8519906 - 财政年份:1986
- 资助金额:
$ 39.9万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Origami-inspired design for a tissue engineered heart valve
职业:受折纸启发的组织工程心脏瓣膜设计
- 批准号:
2337540 - 财政年份:2024
- 资助金额:
$ 39.9万 - 项目类别:
Continuing Grant
Convergence Accelerator Track M: Bio-Inspired Design of Robot Hands for Use-Driven Dexterity
融合加速器轨道 M:机器人手的仿生设计,实现使用驱动的灵活性
- 批准号:
2344109 - 财政年份:2024
- 资助金额:
$ 39.9万 - 项目类别:
Standard Grant
BAMBOO - Build scAled Modular Bamboo-inspired Offshore sOlar systems
BAMBOO - 构建规模化模块化竹子式海上太阳能系统
- 批准号:
10109981 - 财政年份:2024
- 资助金额:
$ 39.9万 - 项目类别:
EU-Funded
CAREER: Scalable Physics-Inspired Ising Computing for Combinatorial Optimizations
职业:用于组合优化的可扩展物理启发伊辛计算
- 批准号:
2340453 - 财政年份:2024
- 资助金额:
$ 39.9万 - 项目类别:
Continuing Grant
CAREER: SHF: Bio-Inspired Microsystems for Energy-Efficient Real-Time Sensing, Decision, and Adaptation
职业:SHF:用于节能实时传感、决策和适应的仿生微系统
- 批准号:
2340799 - 财政年份:2024
- 资助金额:
$ 39.9万 - 项目类别:
Continuing Grant