Quantum Diffusion in Fluctuating Media
波动介质中的量子扩散
基本信息
- 批准号:1500386
- 负责人:
- 金额:$ 12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-08-01 至 2019-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The main focus of this project is the analysis of wave motion in a disordered environment. In a broader context, the research is aimed at answering a basic scientific question: "What are the effects of disorder?" This is a fundamental question relevant to any mathematical model, even one in which disorder is not explicitly included. After all, any real world system is subject to a small amount of noise, and experience shows that even weak disorder may have a profound effect on the behavior of the system. The equations studied in this project arise in the theory of electrical conduction in disordered materials, but are of general interest because of the fundamental nature of both wave motion and disorder. Progress in understanding the solutions to these equations will improve basic understanding of models of theoretical physics and applied mathematics. In addition, a central goal of the research is pedagogical: to introduce undergraduate and graduate students to a fundamental subject and convey to them that mathematics is a vibrant, growing field. The project will proceed through a program of research on the effects of disorder in physical models. A key goal is to analyze the diffusion of waves in a weakly disordered medium over arbitrarily long times. There is a rich non-rigorous theory of the weakly disordered regime in the physics literature based on heuristic analyses and uncontrolled, renormalized perturbation theory which suggests that waves propagate diffusively, characterized by spreading of wave packets over a distance proportional to the square root of t in time t. However, we are far from having a rigorous analysis of the mathematics involved. A major challenge is that diffusive propagation does not occur for waves in a non-random medium. Thus, a naive approach in which the disorder is incorporated perturbatively has not worked, indeed in the physics literature the problem is attacked with renormalized perturbation theory. In recent years the PI and various post-doc and student collaborators have considered the problem of wave diffusion in time-dependent random media, with the time dependence generated by a Markov process. For such models the diffusive propagation, e.g., for the tight binding Schrödinger equation, can be established by spectral analysis. One aim of the present project is to approach the time independent equation as a perturbation of these time dependent equations, which have the virtue of sharing the expected qualitative behavior.
该项目的主要重点是对无序环境中波动运动的分析。在更广泛的背景下,该研究旨在回答一个基本的科学问题:“疾病的影响是什么?”这是与任何数学模型相关的基本问题,即使是疾病未明确包括的模型。毕竟,任何现实世界系统都会遇到少量噪音,并且经验表明,即使是弱的疾病也可能对系统的行为产生深远的影响。该项目中研究的方程式出现在无序材料的电导理论中,但由于波动和混乱的基本性质而引起了普遍的兴趣。了解这些方程的解决方案的进展将改善对理论物理和应用数学模型的基本理解。此外,这项研究的核心目标是教学:将本科生和研究生介绍给一个基本学科,并向他们传达数学是一个充满活力的,成长的领域。该项目将通过有关物理模型中疾病影响的研究计划进行。一个关键目标是分析在任意长时间内弱小的培养基中波的扩散。在物理文献中,基于启发式分析和不受控制的,重命名的扰动理论的物理文献中存在丰富的非矛盾理论,该理论表明,波浪在时间t的距离上散布在与T平方根成比例的距离上。但是,我们远没有对所涉及的数学进行严格的分析。一个主要的挑战是,在非随机介质中的波不会发生分化的传播。这是一种幼稚的方法,其中该疾病被扰动地纳入了疾病,实际上在物理文献中,该问题受到重新归一化的扰动理论的攻击。近年来,PI和各种博士后和学生合作者考虑了时间依赖性随机媒体的波浪差异问题,而Markov过程产生了时间依赖性。对于此类模型,可以通过光谱分析来建立差分传播,例如,对于紧密的结合schrödinger方程。本项目的目的之一是将时间独立方程式作为这些时间依赖方程的扰动,这具有共享预期的定性行为的优点。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Diffusion in the Mean for a Periodic Schrödinger Equation Perturbed by a Fluctuating Potential
受波动势扰动的周期性薛定谔方程的均值扩散
- DOI:10.1007/s00220-020-03692-6
- 发表时间:2020
- 期刊:
- 影响因子:2.4
- 作者:Schenker, Jeffrey;Tilocco, F. Zak;Zhang, Shiwen
- 通讯作者:Zhang, Shiwen
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeffrey Schenker其他文献
Diffusion of Wave Packets in a Markov Random Potential
马尔可夫随机势中波包的扩散
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Yang Kang;Jeffrey Schenker - 通讯作者:
Jeffrey Schenker
Diffusive Propagation of Wave Packets in a Fluctuating Periodic Potential
波动周期势中波包的扩散传播
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
E. Hamza;Yang Kang;Jeffrey Schenker - 通讯作者:
Jeffrey Schenker
Constructive Fractional-Moment Criteria forLocalization in Random
随机定位的建设性分数矩准则
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
OperatorsMichael;Aizenman;Jeffrey Schenker;R. Friedrich;D. Hundertmark - 通讯作者:
D. Hundertmark
An ergodic theorem for homogeneously distributed quantum channels with applications to matrix product states
均匀分布量子通道的遍历定理及其在矩阵乘积状态中的应用
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
R. Movassagh;Jeffrey Schenker - 通讯作者:
Jeffrey Schenker
Eigenvector Localization for Random Band Matrices with Power Law Band Width
具有幂律带宽的随机带矩阵的特征向量定位
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Jeffrey Schenker - 通讯作者:
Jeffrey Schenker
Jeffrey Schenker的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jeffrey Schenker', 18)}}的其他基金
Collaborative Research: Conference: Great Lakes Mathematical Physics Meetings 2024-2025
合作研究:会议:2024-2025 年五大湖数学物理会议
- 批准号:
2401258 - 财政年份:2024
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Ergodic Quantum Processes: Localization, Diffusion, and Steady States
遍历量子过程:局域化、扩散和稳态
- 批准号:
2153946 - 财政年份:2022
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Localization and Diffusion in Open and Many Body Quantum Systems
开放多体量子系统中的局域化和扩散
- 批准号:
1900015 - 财政年份:2019
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
The 2018 Great Lakes Mathematical Physics Meeting
2018年五大湖数学物理会议
- 批准号:
1763855 - 财政年份:2018
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
The 2017 Great Lakes Mathematical Physics Meeting
2017年五大湖数学物理会议
- 批准号:
1700026 - 财政年份:2017
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Interpreting Data from Trapping of Stochastic Movers
解释随机动量陷阱的数据
- 批准号:
1411411 - 财政年份:2014
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
相似国自然基金
关于时间分数阶扩散-波动方程的多参数反问题研究
- 批准号:12301534
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
磁场重联扩散区内高频波动的观测研究
- 批准号:42304167
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
跳-扩散-多时间尺度随机波动率模型下的家庭生命周期内最优资产负债管理问题
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:
两类分数阶扩散-波动方程若干反问题的正则化方法和算法研究
- 批准号:11961044
- 批准年份:2019
- 资助金额:41 万元
- 项目类别:地区科学基金项目
时间分数阶扩散-波动方程的数值算法研究
- 批准号:11901410
- 批准年份:2019
- 资助金额:16.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Uncovering Mechanisms of Racial Inequalities in ADRD: Psychosocial Risk and Resilience Factors for White Matter Integrity
揭示 ADRD 中种族不平等的机制:心理社会风险和白质完整性的弹性因素
- 批准号:
10676358 - 财政年份:2024
- 资助金额:
$ 12万 - 项目类别:
Commercialisation of an All Electric Superplastic Forming/Diffusion Bonding Machine
全电动超塑性成型/扩散接合机的商业化
- 批准号:
10099250 - 财政年份:2024
- 资助金额:
$ 12万 - 项目类别:
Collaborative R&D
CAREER: Well-posedness and long-time behavior of reaction-diffusion and kinetic equations
职业:反应扩散和动力学方程的适定性和长期行为
- 批准号:
2337666 - 财政年份:2024
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
Postdoctoral Fellowship: EAR-PF: The effects of grain-scale deformation on helium diffusion and thermochronometric ages of accessory minerals
博士后奖学金:EAR-PF:晶粒尺度变形对氦扩散和副矿物热测年年龄的影响
- 批准号:
2305568 - 财政年份:2024
- 资助金额:
$ 12万 - 项目类别:
Fellowship Award