FRG: Obstructions to Local-Global Principles and Applications to Algebraic Structures
FRG:局部全局原理的障碍以及代数结构的应用
基本信息
- 批准号:1463901
- 负责人:
- 金额:$ 17.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-07-01 至 2019-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The interplay between number theory and algebraic geometry has been a source of inspiration in modern mathematics. Having led to the solution of a number of outstanding conjectures, such as Fermat's Last Theorem and the Mordell Conjecture, it continues to give rise to deep and important problems in algebra. Local-global principles are a central theme in this interplay of subjects, and many important outstanding problems can be expressed in terms of such principles. This project has the objective of understanding local-global principles and their obstructions, in contexts that are broader than those considered in number theory. The project will also support and enhance the training of graduate students and postdoctoral researchers through seminars, conferences and workshops, and mentoring activities.The Focused Research Group will focus on local-global principles for algebraic structures defined over function fields of curves over base fields such as p-adic fields, with a longer term goal of treating the case of function fields of curves over global fields. The obstructions to such local-global principles can often be formulated in terms of cohomology. Our project aims to study the finiteness of these obstructions and determine criteria for them to vanish. The resulting understanding will be applied to proving conjectures and solving open problems concerning algebraic structures such as quadratic forms and associative algebras. This will include situations that have been studied by many researchers but where solutions had previously seemed out of reach. Research methods will include field patching, cohomological methods including residues and duality, and approaches from geometry.
数字理论与代数几何形状之间的相互作用一直是现代数学中灵感的来源。导致了许多出色的猜想解决方案,例如Fermat的Last Therorem和Mordell猜想,它继续引起代数中的深层和重要问题。本地全球原则是该主题相互作用的中心主题,许多重要的问题可以从此类原则上表达出来。该项目的目的是理解本地全球原则及其障碍,而在数字理论中比被认为的情况更广泛。该项目还将通过研讨会,会议和研讨会以及指导活动来支持和增强研究生和博士后研究人员的培训。专注的研究小组将专注于本地全球全球范围的原则,用于定义的代数结构,这些原理定义了基础领域的曲线功能领域,作为P-ADIC字段,其长期目标是治疗全球字段上曲线功能场的情况。这种局部全球原则的障碍通常可以从同时学方面提出。我们的项目旨在研究这些障碍的有限性,并确定它们消失的标准。由此产生的理解将应用于证明猜想和解决有关代数结构(例如二次形式和联想代数)的开放问题。这将包括许多研究人员所研究的情况,但是解决方案以前似乎遥不可及。研究方法将包括现场弥补,包括残基和二元性在内的共同体学方法以及几何形状的方法。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Local-Global Principles for Constant Reductive Groups over Semi-Global Fields
半全局域上常约简群的局部全局原理
- DOI:10.1307/mmj/20217219
- 发表时间:2022
- 期刊:
- 影响因子:0.9
- 作者:Colliot-Thélène, Jean-Louis;Harbater, David;Hartmann, Julia;Krashen, Daniel;Parimala, R.;Suresh, V.
- 通讯作者:Suresh, V.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Krashen其他文献
Daniel Krashen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Krashen', 18)}}的其他基金
Algebraic Structures and the Arithmetic of Fields
代数结构和域的算术
- 批准号:
2401018 - 财政年份:2023
- 资助金额:
$ 17.32万 - 项目类别:
Continuing Grant
CAREER: The Arithmetic of Fields and the Complexity of Algebraic Structures
职业:域算术和代数结构的复杂性
- 批准号:
2049180 - 财政年份:2019
- 资助金额:
$ 17.32万 - 项目类别:
Continuing Grant
FRG: Obstructions to Local-Global Principles and Applications to Algebraic Structures
FRG:局部全局原理的障碍以及代数结构的应用
- 批准号:
2001109 - 财政年份:2019
- 资助金额:
$ 17.32万 - 项目类别:
Standard Grant
Algebraic Structures and the Arithmetic of Fields
代数结构和域的算术
- 批准号:
1902144 - 财政年份:2019
- 资助金额:
$ 17.32万 - 项目类别:
Continuing Grant
CAREER: The Arithmetic of Fields and the Complexity of Algebraic Structures
职业:域算术和代数结构的复杂性
- 批准号:
1151252 - 财政年份:2012
- 资助金额:
$ 17.32万 - 项目类别:
Continuing Grant
The structure of invariants in algebra and geometry
代数和几何中不变量的结构
- 批准号:
1007462 - 财政年份:2010
- 资助金额:
$ 17.32万 - 项目类别:
Standard Grant
相似国自然基金
小间隔障碍物扰动下气相爆轰诱导距离的延长效应与机理研究
- 批准号:12302449
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
铁路障碍物长距离高分辨激光雷达技术
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
奥氏体钢位错与运动型障碍物协同强韧化机理及调控基础研究
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
狭缝和和含障碍物管道内的预混火焰动力学
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
面向自动驾驶的非结构化路面环境负障碍物以及运动障碍物检测关键技术研究
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
相似海外基金
Local-global principles: arithmetic statistics and obstructions
局部全局原则:算术统计和障碍
- 批准号:
EP/S004696/2 - 财政年份:2021
- 资助金额:
$ 17.32万 - 项目类别:
Research Grant
FRG: Obstructions to Local-Global Principles and Applications to Algebraic Structures
FRG:局部全局原理的障碍以及代数结构的应用
- 批准号:
2001109 - 财政年份:2019
- 资助金额:
$ 17.32万 - 项目类别:
Standard Grant
Local-global principles: arithmetic statistics and obstructions
局部全局原则:算术统计和障碍
- 批准号:
EP/S004696/1 - 财政年份:2018
- 资助金额:
$ 17.32万 - 项目类别:
Research Grant
FRG: Collab: Obstructions to Local-Global Principles and Applications to Algebraic Structures
FRG:协作:局部全局原理的障碍及其在代数结构中的应用
- 批准号:
1463733 - 财政年份:2015
- 资助金额:
$ 17.32万 - 项目类别:
Continuing Grant
FRG: Obstructions to Local-Global Principles and Applications to Algebraic Structures
FRG:局部全局原理的障碍以及代数结构的应用
- 批准号:
1463882 - 财政年份:2015
- 资助金额:
$ 17.32万 - 项目类别:
Continuing Grant