CAREER: Privacy-preserving learning for distributed data

职业:分布式数据的隐私保护学习

基本信息

  • 批准号:
    1453432
  • 负责人:
  • 金额:
    $ 54万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-07-01 至 2021-06-30
  • 项目状态:
    已结题

项目摘要

Medical technologies such as imaging and sequencing make it possible to gather massive amounts of information at increasingly lower cost. Sharing data from studies can advance scientific understanding and improve healthcare outcomes. Concern about patient privacy, however, can preclude open data sharing, thus hampering progress in understanding stigmatized conditions such as mental health disorders. This research seeks to understand how to analyze and learn from sensitive data held at different sites (such as medical centers) in a way that quantifiably and rigorously protects the privacy of the data. The framework used in this research is differential privacy, a recently-proposed model for measuring privacy risk in data sharing. Differentially private algorithms provide approximate (noisy) answers to protect sensitive data, involving a tradeoff between privacy and utility. This research studies how to combine private approximations from different sites to improve the overall quality or utility of the result. The main goals of this research are to understand the fundamental limits of private data sharing, to design algorithms for making private approximations and rules for combining them, and to understand the consequences of sites having more complex privacy and sharing restrictions. The methods used to address these problems are a mix of mathematical techniques from statistics, computer science, and electrical engineering.The educational component of this research will involve designing introductory university courses and material on data science, undergraduate research projects, curricular materials for graduate courses, and outreach to the growing data-hacker community via presentations, tutorial materials, and open-source software. The primary aim of this research is bridge the gap between theory and practice by developing algorithmic principles for practical privacy-preserving algorithms. These algorithms will be validated on neuroimaging data used to understand and diagnose mental health disorders. Implementing the results of this research will create a blueprint for building practical privacy-preserving learning for research in healthcare and other fields. The tradeoffs between privacy and utility in distributed systems lead naturally to more general questions of cost-benefit tradeoffs for learning problems, and the same algorithmic principles will shed light on information processing and machine learning in general distributed systems where messages may be noisy or corrupted.
成像和测序等医疗技术使以越来越低的成本收集大量信息成为可能。共享研究数据可以提高科学理解并改善医疗保健结果。但是,对患者隐私的担忧可能会排除开放数据共享,从而阻碍了理解诸如心理健康障碍之类的污名化状况的进展。 这项研究试图了解如何以量化和严格保护数据隐私的方式分析和从不同站点(例如医疗中心)的敏感数据中学习。 这项研究中使用的框架是差异隐私,这是一个最近验证的模型,用于衡量数据共享中的隐私风险。 差异化私有算法提供了近似(嘈杂)的答案,以保护敏感数据,涉及隐私和公用事业之间的权衡。 该研究研究了如何结合不同站点的私人近似值,以提高结果的总体质量或效用。这项研究的主要目标是了解私人数据共享的基本限制,设计用于制定私人近似值和合并规则的算法,并了解具有更复杂隐私和共享限制的站点的后果。 用于解决这些问题的方法是统计学,计算机科学和电气工程的数学技术的混合。本研究的教育部分将涉及设计入门大学课程和数据科学材料,本科研究项目,研究生课程的课程材料以及向成长的数据建造者社区通过成长的数据 - 培养基介绍和开放式材料和开放式材料和开放式材料和开放式材料和开放式材料和开放式软件。这项研究的主要目的是通过为实用隐私算法开发算法原理来弥合理论与实践之间的差距。这些算法将在用于理解和诊断心理健康障碍的神经影像学数据上进行验证。实施这项研究的结果将为建立医疗保健和其他领域研究的实用隐私学习学习创建蓝图。 在分布式系统中的隐私与公用事业之间的权衡自然而然地导致了有关学习问题的成本效益折衷问题,而相同的算法原则将揭示信息处理和机器学习在一般分布式系统中可能嘈杂或腐败的一般分布式系统。

项目成果

期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Analysis of a privacy-preserving PCA algorithm using random matrix theory
基于随机矩阵理论的隐私保护PCA算法分析
Optimal differential privacy mechanisms under Hamming distortion for structured source classes
Data-weighted ensemble learning for privacy-preserving distributed learning
Large scale collaboration with autonomy: Decentralized data ICA
Distributed Differentially Private Algorithms for Matrix and Tensor Factorization
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Anand Sarwate其他文献

Ieee Information Theory Society Newsletter President's Column from the Editor Ieee Information Theory Society Newsletter the Historian's Column
IEEE 信息论学会通讯 主席编辑专栏 IEEE 信息论学会通讯 历史学家专栏
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Meir Feder;Tracey Ho;Joerg Kliewer;Anand Sarwate;Andy Singer
  • 通讯作者:
    Andy Singer
Ieee Information Theory Society Newsletter President's Column from the Editor It Society Member Honored Scholar One Website for Ieee Transactions on Information Theory Has Gone Live Throughput and Capacity Regions Coding for Noisy Networks
Ieee 信息论协会通讯 编辑主席专栏 It 协会会员 荣誉学者 IEEE 信息论交易网站已上线 吞吐量和容量 噪声网络区域编码
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Helmut Bölcskei;Giuseppe Caire;Meir Feder;Joerg Kliewer;Anand Sarwate;Andy Singer;Dave Forney;S. Shamai;Alexander Vardy;Sergio Verdú;F. Kschischang;Tracey Ho;Norman C Beaulieu;Icore Research Chair;Anthony Ephremides;A. E. Gamal
  • 通讯作者:
    A. E. Gamal

Anand Sarwate的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Anand Sarwate', 18)}}的其他基金

RINGS: REALTIME: Resilient Edge-cloud Autonomous Learning with Timely Inferences
RINGS:实时:具有及时推理能力的弹性边缘云自主学习
  • 批准号:
    2148104
  • 财政年份:
    2022
  • 资助金额:
    $ 54万
  • 项目类别:
    Continuing Grant
CIF: Small: Collaborative Research: Between Shannon and Hamming
CIF:小:香农和汉明之间的合作研究
  • 批准号:
    1909468
  • 财政年份:
    2019
  • 资助金额:
    $ 54万
  • 项目类别:
    Standard Grant
CIF: Small: ESTRELLA: Exploiting Structure in Tensors for Representation, Estimation, and Limits of Learning Algorithms
CIF:小:ESTRELLA:利用张量结构进行表示、估计和学习算法的限制
  • 批准号:
    1910110
  • 财政年份:
    2019
  • 资助金额:
    $ 54万
  • 项目类别:
    Standard Grant
TWC: Small: PERMIT: Privacy-Enabled Resource Management for IoT Networks
TWC:小型:PERMIT:物联网网络的启用隐私的资源管理
  • 批准号:
    1617849
  • 财政年份:
    2016
  • 资助金额:
    $ 54万
  • 项目类别:
    Standard Grant
CIF: Small: Collaborative Research: Inference by social sampling
CIF:小型:协作研究:社会抽样推断
  • 批准号:
    1440033
  • 财政年份:
    2014
  • 资助金额:
    $ 54万
  • 项目类别:
    Standard Grant
CIF: Small: Collaborative Research: Inference by social sampling
CIF:小型:协作研究:社会抽样推断
  • 批准号:
    1218331
  • 财政年份:
    2012
  • 资助金额:
    $ 54万
  • 项目类别:
    Standard Grant

相似国自然基金

面向身份高可用性的人脸识别隐私保护
  • 批准号:
    62306308
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
支持隐私保护的群智感知多任务数据聚合方法研究
  • 批准号:
    62302173
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
隐私保护下网络化系统的分布式智能监测与安全控制
  • 批准号:
    62303353
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
鲁棒增强的分布式机器学习隐私保护关键技术研究
  • 批准号:
    62302360
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向掌纹识别的安全与隐私保护理论和方法研究
  • 批准号:
    62376211
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Architectural Foundations for Practical Privacy-Preserving Computation
职业:实用隐私保护计算的架构基础
  • 批准号:
    2340137
  • 财政年份:
    2024
  • 资助金额:
    $ 54万
  • 项目类别:
    Continuing Grant
CAREER: Privacy Preserving Security Analytics: When Security Meets Privacy
职业:隐私保护安全分析:当安全遇到隐私时
  • 批准号:
    2308730
  • 财政年份:
    2023
  • 资助金额:
    $ 54万
  • 项目类别:
    Continuing Grant
CAREER: Towards Privacy-Preserving Wireless Communication: Fundamental Limits and Coding Schemes
职业:走向保护隐私的无线通信:基本限制和编码方案
  • 批准号:
    2401373
  • 财政年份:
    2023
  • 资助金额:
    $ 54万
  • 项目类别:
    Continuing Grant
CAREER: Extending the Foundations of Privacy-Preserving Machine Learning
职业:扩展隐私保护机器学习的基础
  • 批准号:
    2144532
  • 财政年份:
    2022
  • 资助金额:
    $ 54万
  • 项目类别:
    Continuing Grant
CAREER: Foundations of Privacy-Preserving Collaborative Learning
职业:隐私保护协作学习的基础
  • 批准号:
    2144927
  • 财政年份:
    2022
  • 资助金额:
    $ 54万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了