CAREER: Leveraging temporal streams for micro-architectural innovation in data center servers
职业:利用时间流进行数据中心服务器的微架构创新
基本信息
- 批准号:1452904
- 负责人:
- 金额:$ 39.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-02-15 至 2021-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
As the global user base for online services continues to expand and new services and features are rapidly developed, data centers from which these online cloud services operate experience constant pressure to achieve higher performance and improve their quality of service. However, supporting the adoption of cloud services in all aspects of people?s daily lives requires expanding data centers to an extreme scale, with hundreds of millions of servers and ecologically unthinkable energy bills. This research develops technologies to improve the performance and efficiency of future data centers, targeting higher performance and lower energy costs from each deployed server. As such, it directly contributes to sustainable growth of data centers and online services, while at the same time training world-class experts specialized in tackling the challenges facing future data centers and clouds.This research leverages a recently-codified phenomenon called "temporal streams" to solve a number of long-standing micro-architectural performance bottlenecks facing server systems in the cloud. Many of the performance enhancing techniques developed over the course of the past several decades for the desktop, mobile, and super-computer domains provide limited benefits to server systems, because the size and complexity of a typical cloud workload requires significantly greater meta-data storage capacity than currently available to these techniques. This work re-architects the meta-data storage of speculative structures, leveraging temporal streams to expand their effective capacity. Specifically, this work targets instruction prefetchers, branch predictors, and hardware memorization as case studies to demonstrate the ability of temporal streaming to provide sufficient meta-data storage for these mechanisms when executing cloud workloads.
随着全球在线服务的全球用户基础继续扩展,新服务和功能得到了迅速开发,这些在线云服务从中承受着持续的压力,以实现更高的性能并提高其服务质量。但是,支持在人们日常生活的各个方面都采用云服务需要将数据中心扩展到极端规模,其中数亿服务器和生态上无法想象的能源费用。这项研究开发技术是为了提高未来数据中心的性能和效率,针对每个部署的服务器的较高性能和降低能源成本。 As such, it directly contributes to sustainable growth of data centers and online services, while at the same time training world-class experts specialized in tackling the challenges facing future data centers and clouds.This research leverages a recently-codified phenomenon called "temporal streams" to solve a number of long-standing micro-architectural performance bottlenecks facing server systems in the cloud.在过去的几十年中,台式机,移动和超级计算机域在过去的几十年中开发的许多性能增强技术为服务器系统提供了有限的好处,因为典型的云工作负载的大小和复杂性需要比当前可用的元数据存储容量要大得多。这项工作重新构建了投机结构的元数据存储,利用临时流以扩大其有效能力。具体而言,这项工作针对预摘要,分支预测变量和硬件存储器作为案例研究,以证明临时流媒体在执行云工作负载时为这些机制提供足够的元数据存储的能力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Ferdman其他文献
Michael Ferdman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Ferdman', 18)}}的其他基金
SHF: Small: Massively Parallel Server Processors
SHF:小型:大规模并行服务器处理器
- 批准号:
2153297 - 财政年份:2022
- 资助金额:
$ 39.76万 - 项目类别:
Standard Grant
FoMR: IPC Improvement through Hardware Memorization
FoMR:通过硬件记忆改进 IPC
- 批准号:
1912517 - 财政年份:2019
- 资助金额:
$ 39.76万 - 项目类别:
Standard Grant
Student Travel - IEEE International Symposium on Workload Characterization (IISWC)
学生旅行 - IEEE 工作负载表征国际研讨会 (IISWC)
- 批准号:
1737875 - 财政年份:2017
- 资助金额:
$ 39.76万 - 项目类别:
Standard Grant
SPX: Collaborative Research: Harnessing the Power of High-Bandwidth Memory via Provably Efficient Parallel Algorithms
SPX:协作研究:通过可证明高效的并行算法利用高带宽内存的力量
- 批准号:
1725543 - 财政年份:2017
- 资助金额:
$ 39.76万 - 项目类别:
Standard Grant
XPS:FULL:DSD: Collaborative Research: FPGA Cloud Platform for Deep Learning, Applications in Computer Vision
XPS:FULL:DSD:协作研究:深度学习 FPGA 云平台、计算机视觉应用
- 批准号:
1533739 - 财政年份:2015
- 资助金额:
$ 39.76万 - 项目类别:
Standard Grant
Preliminary Study to Demonstrate the Performance and Power Advantages of FPGAs over GPUs for Deep Learning in Computer Vision
初步研究展示 FPGA 相对于 GPU 在计算机视觉深度学习方面的性能和功耗优势
- 批准号:
1453460 - 财政年份:2014
- 资助金额:
$ 39.76万 - 项目类别:
Standard Grant
II-New: Secure and Efficient Cloud Infrastructure and Accessibility Services
II-新:安全高效的云基础设施和无障碍服务
- 批准号:
1405641 - 财政年份:2014
- 资助金额:
$ 39.76万 - 项目类别:
Standard Grant
相似国自然基金
利用精准谱系追踪揭示关节囊纤维化导致颞下颌关节强直的分子机制研究
- 批准号:82301010
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
利用同步辐射3D显微成像研究Notch信号通路对颞叶癫痫海马微血管新生的作用及调控机制
- 批准号:81601139
- 批准年份:2016
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
利用同步辐射X-射线谱学和红外谱学研究颞叶癫痫发生过程中金属离子和生化分子代谢
- 批准号:U1632120
- 批准年份:2016
- 资助金额:50.0 万元
- 项目类别:联合基金项目
利用EEG-fMRI和DSI技术研究马桑内酯恒河猴颞叶癫痫模型的神经网络机制
- 批准号:81201009
- 批准年份:2012
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
利用SGZ神经再生促进小鼠颞叶癫痫慢性期海马神经构筑修复和症状改善的研究
- 批准号:81171232
- 批准年份:2011
- 资助金额:55.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Leveraging the power of ecological modeling and functional ecology to understand spatio-temporal variation in community assembly through the late Quaternary
合作研究:利用生态模型和功能生态学的力量来了解第四纪晚期群落聚集的时空变化
- 批准号:
2149416 - 财政年份:2022
- 资助金额:
$ 39.76万 - 项目类别:
Standard Grant
Collaborative Research: Leveraging the power of ecological modeling and functional ecology to understand spatio-temporal variation in community assembly through the late Quaternary
合作研究:利用生态模型和功能生态学的力量来了解第四纪晚期群落聚集的时空变化
- 批准号:
2149419 - 财政年份:2022
- 资助金额:
$ 39.76万 - 项目类别:
Standard Grant
EAGER: A novel investigation of population and community temporal trajectories leveraging experimental disturbances from Konza Prairie Long-Term Ecological Research Network site
EAGER:利用康扎草原长期生态研究网络站点的实验扰动对人口和群落时间轨迹进行新颖的调查
- 批准号:
2227298 - 财政年份:2022
- 资助金额:
$ 39.76万 - 项目类别:
Standard Grant
Leveraging visual fidelity to understand the neural mechanisms responsible for remembering images and objects
利用视觉保真度来理解负责记住图像和物体的神经机制
- 批准号:
10275796 - 财政年份:2021
- 资助金额:
$ 39.76万 - 项目类别:
Leveraging visual fidelity to understand the neural mechanisms responsible for remembering images and objects
利用视觉保真度来理解负责记住图像和物体的神经机制
- 批准号:
10666590 - 财政年份:2021
- 资助金额:
$ 39.76万 - 项目类别: