DMREF/Collaborative Research: Multiscale Theory and Experiment in Search for and Synthesis of Novel Nanostructured Phases in BCN Systems

DMREF/合作研究:在 BCN 系统中寻找和合成新型纳米结构相的多尺度理论和实验

基本信息

  • 批准号:
    1434613
  • 负责人:
  • 金额:
    $ 33.33万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-10-01 至 2018-09-30
  • 项目状态:
    已结题

项目摘要

Non-technical Description: Superhard materials, such as diamond, cubic boron nitride, and boron carbide (B4C) can exhibit high melting temperatures, large compression strengths, chemical inertness, and high thermal conductivity, making them of practical importance for science and engineering applications. However, they are brittle, breaking easily, a serious flaw that prevents many engineering applications. Computational approaches will be combined to develop ductile superhard materials for extended engineering applications. Initially, quantum mechanics will be used to predict the best candidates for new ductile superhard materials by analyzing a large number of cases in silico. For the best predicted materials novel experimental methods will be employed in which diamond anvil cells are twisted while applying high pressure to form the predicted phases. The properties of these materials will then be tested. Technical Description: The goal is to advance multiscale theory, modeling, and experiment sufficiently to enable a revolutionary new approach to search for and synthesize novel nanostructured phases in the BCN system. Large plastic shear deformation will be combined with high pressure in a unique rotational diamond anvil cell (RDAC), to (a) search for new nanostructured superhard phases that cannot be obtained under pressure without plastic shear straining, (b) dramatically reduce pressure required for phase transformation pathways to new and/or known phases, and (c) stabilize these new phases for processing at ambient pressure. The focus will be on some of the most promising materials within the BCN system: superhard phases of carbon (diamond, fullerene, high-density amorphous C, nanotubes, and long-range ordered amorphous clusters), boron, cubic cBN and wurtzitic wBN, cubic cBC2N, cBC4N, high density cC3N4 (predicted to be harder than diamond but never synthesized), nanostructured composites within BCN system, and other new phases in these systems, all of which will be predicted by the atomistic simulations.
非技术描述:超硬材料,如金刚石、立方氮化硼和碳化硼(B4C)可以表现出高熔化温度、大压缩强度、化学惰性和高导热性,使其在科学和工程应用中具有重要的实际意义。然而,它们很脆,容易断裂,这是阻碍许多工程应用的严重缺陷。将结合计算方法来开发可扩展的工程应用的延展性超硬材料。最初,量子力学将通过分析大量的计算机案例来预测新型延性超硬材料的最佳候选材料。为了获得最佳预测材料,将采用新颖的实验方法,在施加高压的同时扭曲金刚石砧座以形成预测的物相。然后将测试这些材料的特性。技术描述:目标是充分推进多尺度理论、建模和实验,以实现革命性的新方法来搜索和合成 BCN 系统中的新型纳米结构相。大塑性剪切变形将与独特的旋转金刚石砧室(RDAC)中的高压相结合,以(a)寻找新的纳米结构超硬相,如果没有塑性剪切应变,则无法在压力下获得这种相,(b)显着降低所需的压力形成新相和/或已知相的相变途径,以及(c)稳定这些新相以便在环境压力下进行加工。重点将放在BCN系统中一些最有前途的材料上:碳的超硬相(金刚石、富勒烯、高密度非晶碳、纳米管和长程有序非晶簇)、硼、立方立方氮化硼和纤锌矿wBN,立方体 cBC2N、cBC4N、高密度 cC3N4(预计比金刚石更硬,但从未合成)、BCN 系统内的纳米结构复合材料以及这些系统中的其他新相,所有这些将通过原子模拟来预测。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Large elastoplastic deformation of a sample under compression and torsion in a rotational diamond anvil cell under megabar pressures
兆巴压力下旋转金刚石砧室中压缩和扭转下样品的大弹塑性变形
Plastic flows and strain-induced alpha to omega phase transformation in zirconium during compression in a diamond anvil cell: Finite element simulations
金刚石砧室压缩期间锆中的塑性流动和应变诱导的 α 到 Ω 相变:有限元模拟
Coupled elastoplasticity and plastic strain-induced phase transformation under high pressure and large strains: Formulation and application to BN sample compressed in a diamond anvil cell
高压和大应变下耦合弹塑性和塑性应变诱导的相变:在金刚石砧室中压缩的 BN 样品的配方和应用
FEM simulation of large deformation of copper in the quasi-constrain high-pressure-torsion setup
准约束高压扭转装置中铜大变形的有限元模拟
Pressure Self-focusing Effect and Novel Methods for Increasing the Maximum Pressure in Traditional and Rotational Diamond Anvil Cells
压力自聚焦效应和增加传统和旋转金刚石砧室最大压力的新方法
  • DOI:
    10.1038/srep45461
  • 发表时间:
    2017-04-21
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Feng B;Levitas VI
  • 通讯作者:
    Levitas VI
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Valery Levitas其他文献

Valery Levitas的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Valery Levitas', 18)}}的其他基金

New Rules for Coupled Severe Plastic Deformations, Phase Transformations, and Structural Changes in Metals under High Pressure
高压下金属耦合严重塑性变形、相变和结构变化的新规则
  • 批准号:
    2246991
  • 财政年份:
    2023
  • 资助金额:
    $ 33.33万
  • 项目类别:
    Standard Grant
Plasticity, Phase Transformations, and their Interaction under High Pressure in Silicon
硅中的塑性、相变及其在高压下的相互作用
  • 批准号:
    1943710
  • 财政年份:
    2020
  • 资助金额:
    $ 33.33万
  • 项目类别:
    Standard Grant
Deformation of Metals under High Pressure: Multiscale Stress Fields, Plasticity, and Phase Transformations
高压下金属的变形:多尺度应力场、塑性和相变
  • 批准号:
    1904830
  • 财政年份:
    2019
  • 资助金额:
    $ 33.33万
  • 项目类别:
    Continuing Grant
Melt-Dispersion Mechanism for Energetic Reactions of Aluminum Nanoparticles
铝纳米粒子高能反应的熔融分散机制
  • 批准号:
    1104518
  • 财政年份:
    2010
  • 资助金额:
    $ 33.33万
  • 项目类别:
    Standard Grant
Virtual Melting and Amorphization as Mechanisms of Plastic Flow, Fracture, and Phase Transformations
虚拟熔化和非晶化作为塑性流动、断裂和相变的机制
  • 批准号:
    0969143
  • 财政年份:
    2010
  • 资助金额:
    $ 33.33万
  • 项目类别:
    Standard Grant
Melt-Dispersion Mechanism for Energetic Reactions of Aluminum Nanoparticles
铝纳米粒子高能反应的熔融分散机制
  • 批准号:
    0755236
  • 财政年份:
    2008
  • 资助金额:
    $ 33.33万
  • 项目类别:
    Standard Grant
Stress-Induced Virtual Melting as a New Mechanism of Solid-Solid Phase Transformations and Stress Relaxation
应力诱导虚拟熔化作为固-固相变和应力松弛的新机制
  • 批准号:
    0555909
  • 财政年份:
    2006
  • 资助金额:
    $ 33.33万
  • 项目类别:
    Standard Grant
Continuum Mechanical and Micromechanical Fundamentals of Mechanochemistry of Energetic Materials
含能材料机械化学的连续力学和微机械基础
  • 批准号:
    0201108
  • 财政年份:
    2002
  • 资助金额:
    $ 33.33万
  • 项目类别:
    Standard Grant

相似国自然基金

基于交易双方异质性的工程项目组织间协作动态耦合研究
  • 批准号:
    72301024
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
医保基金战略性购买促进远程医疗协作网价值共创的制度创新研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    45 万元
  • 项目类别:
    面上项目
面向协作感知车联网的信息分发时效性保证关键技术研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向5G超高清移动视频传输的协作NOMA系统可靠性研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于自主性边界的人机协作-对抗混合智能控制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys
合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计
  • 批准号:
    2411603
  • 财政年份:
    2024
  • 资助金额:
    $ 33.33万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
  • 批准号:
    2409552
  • 财政年份:
    2024
  • 资助金额:
    $ 33.33万
  • 项目类别:
    Continuing Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
  • 批准号:
    2413579
  • 财政年份:
    2024
  • 资助金额:
    $ 33.33万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: High-Throughput Screening of Electrolytes for the Next Generation of Rechargeable Batteries
合作研究:DMREF:下一代可充电电池电解质的高通量筛选
  • 批准号:
    2323118
  • 财政年份:
    2023
  • 资助金额:
    $ 33.33万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: De Novo Proteins as Junctions in Polymer Networks
合作研究:DMREF:De Novo 蛋白质作为聚合物网络中的连接点
  • 批准号:
    2323316
  • 财政年份:
    2023
  • 资助金额:
    $ 33.33万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了