DMREF/Collaborative Research: Accelerated Development of Next Generation of Ti Alloys by ICMSE Exploitation of Non-Conventional Transformation Pathways

DMREF/合作研究:通过 ICMSE 探索非常规转变途径加速下一代钛合金的开发

基本信息

  • 批准号:
    1435483
  • 负责人:
  • 金额:
    $ 60.6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-10-01 至 2017-09-30
  • 项目状态:
    已结题

项目摘要

Non-technical SummaryThis DMREF research program aims to formulate an integrated computational materials science and engineering (ICMSE) approach and, consequently develop tools, to accelerate the development of new types of alloys that most likely will have been missed by the traditional trial-and-error method. This effort is an integral part of the national efforts under the Materials Genome Initiative (MGI) and the Integrated Computational Materials Engineering (ICME) initiative. The successful implementation of these new methodologies and design strategy for materials R&D will have a profound impact on industrial exploitation of new materials and optimization of existing ones. The provision of such ICME tools, applicable to an important class of widely applicable structural materials, will have a marked impact on a broad range of advanced technological areas including aerospace, transportation and energy. Because future materials R&D activities, requiring substantially reduced time and cost cycles, must integrate computational materials research with critical experiments, the proposed program will directly prepare graduate students to immediately contribute to the success of ICMSE in industry. Additionally, the proposed training programs for researchers involved in materials development will accelerate the implementation of the new methodology in industry, resulting in very much increased effectiveness of our materials technologists. Regarding educational outreach, the present DMREF program encourages high school students with diverse ethnic backgrounds to enter science and engineering disciplines.Technical SummaryThis research program involves the integration of sophisticated computational models, at multiple scales, highly advanced materials characterization techniques, and combinatorial and accelerated methods for materials processing and property evaluation. Such a unique coupling will undoubtedly raise significantly the state-of-the-art in the discovery and development of new structural materials. Regarding the targeted material system involved in the proposed program, i.e. titanium alloys, the focus is on the exploitation of recently discovered non-conventional transformation pathways. Thus, recent theoretical and experimental investigations suggest possibilities of achieving extremely fine and uniform alpha+beta microstructures exhibiting substantially improved properties through these non-conventional transformation pathways including pseudo-spinodal decomposition and precursory phase separation. Using an integrated computational materials science and engineering (ICMSE) approach, the development of next generation of Ti alloys based on these new and promising transformation mechanisms will be accelerated. For the first time, alloy development will be led by computational modeling, mechanistically informed and validated by critical experiments involving novel combinatorial methods for materials processing and state-of-the-art characterization techniques. The focus is on Ti alloys for structural applications in a broad range of advanced technological areas including aerospace, transportation and energy (petrochemical and nuclear). The outcomes will lead to a microstructure simulator, a property simulator, and an alloy design simulator for titanium alloys. An additional exciting aspect of this program is that the development and application of this new methodology is expected to result in new science in alloy design.
非技术摘要该 DMREF 研究计划旨在制定综合计算材料科学与工程 (ICMSE) 方法,从而开发工具,以加速新型合金的开发,而传统的试验方法很可能会错过这种合金的开发。错误方法。这项工作是材料基因组计划(MGI)和综合计算材料工程(ICME)计划下国家努力的组成部分。这些新材料研发方法和设计策略的成功实施将对新材料的工业开发和现有材料的优化产生深远的影响。提供此类适用于广泛应用的重要结构材料的 ICME 工具,将对航空航天、交通运输和能源等广泛的先进技术领域产生显着影响。由于未来的材料研发活动需要大幅减少时间和成本周期,必须将计算材料研究与关键实验相结合,因此拟议的计划将直接帮助研究生做好准备,立即为 ICMSE 在行业中的成功做出贡献。此外,拟议的针对材料开发研究人员的培训计划将加速新方法在工业中的实施,从而大大提高我们材料技术人员的效率。在教育推广方面,目前的 DMREF 计划鼓励不同种族背景的高中生进入科学和工程学科。技术摘要该研究计划涉及复杂的多尺度计算模型、高度先进的材料表征技术以及组合和加速方法的集成用于材料加工和性能评估。这种独特的耦合无疑将显着提高新型结构材料发现和开发的最先进水平。关于拟议计划中涉及的目标材料系统,即钛合金,重点是开发最近发现的非常规转变途径。因此,最近的理论和实验研究表明,通过这些非常规转变途径(包括伪旋节线分解和前体相分离),有可能实现极其精细和均匀的α+β微观结构,从而表现出显着改善的性能。使用集成计算材料科学与工程(ICMSE)方法,将加速基于这些新的有前途的转变机制的下一代钛合金的开发。合金开发将首次由计算模型主导,通过关键实验提供机械信息和验证,涉及材料加工的新颖组合方法和最先进的表征技术。重点是钛合金在航空航天、交通运输和能源(石化和核能)等广泛先进技术领域的结构应用。研究结果将产生钛合金的微观结构模拟器、性能模拟器和合金设计模拟器。该计划的另一个令人兴奋的方面是,这种新方法的开发和应用预计将带来合金设计的新科学。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yunzhi Wang其他文献

Novel transformation pathway and heterogeneous precipitate microstructure in Ti-alloys
钛合金中的新型转变途径和异质析出物微观结构
  • DOI:
    10.1016/j.actamat.2020.06.048
  • 发表时间:
    2020-09
  • 期刊:
  • 影响因子:
    9.4
  • 作者:
    Tianlong Zhang;Dong Wang;Yunzhi Wang
  • 通讯作者:
    Yunzhi Wang
Revealing the atomistic mechanisms of strain glass transition in ferroelastics
揭示铁弹性体应变玻璃化转变的原子机制
  • DOI:
    10.1016/j.actamat.2020.04.014
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    9.4
  • 作者:
    Chuanxin Liang;Dong Wang;Zhao Wang;Xiangdong Ding;Yunzhi Wang
  • 通讯作者:
    Yunzhi Wang
Numerical simulation of irradiation hardening in Zirconium
锆辐照硬化的数值模拟
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Boyne;C. Shen;R. Najafabadi;Yunzhi Wang
  • 通讯作者:
    Yunzhi Wang
Substrate effect on the thickness of spin-coated ultrathin polymer film
基材对旋涂聚合物超薄膜厚度的影响
  • DOI:
    10.1063/1.2133926
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    4
  • 作者:
    K. Cheung;R. Grover;Yunzhi Wang;C. Gurkovich;G. Wang;J. Scheinbeim
  • 通讯作者:
    J. Scheinbeim
Correlated Nucleation of Precipitates in Magnesium Alloy WE54
镁合金 WE54 中析出物的相关形核
  • DOI:
    10.1002/9781118147726.ch1
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    9.4
  • 作者:
    H. Liu;Yipeng Gao;Yunzhi Wang;J. Nie
  • 通讯作者:
    J. Nie

Yunzhi Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yunzhi Wang', 18)}}的其他基金

Collaborative Research: Compositionally and Structurally Modulated Ferroelastic Films for Unprecedented Superelastic Properties
合作研究:成分和结构调制的铁弹性薄膜,具有前所未有的超弹性特性
  • 批准号:
    2333551
  • 财政年份:
    2024
  • 资助金额:
    $ 60.6万
  • 项目类别:
    Continuing Grant
Collaborative Research: Traversals in Transformation Strain Space and Microstructure Design for High Performance Ferroelastic Materials
合作研究:高性能铁弹性材料的变换应变空间遍历和微观结构设计
  • 批准号:
    1923929
  • 财政年份:
    2020
  • 资助金额:
    $ 60.6万
  • 项目类别:
    Continuing Grant
Collaborative Research: Design of Low-Hysteresis High-Susceptibility Materials by Nanodomain Engineering
合作研究:利用纳米域工程设计低磁滞高磁化率材料
  • 批准号:
    1410322
  • 财政年份:
    2014
  • 资助金额:
    $ 60.6万
  • 项目类别:
    Continuing Grant
Materials World Network: Collaborative Research: Modeling Ferroelastic Strain Glasses
材料世界网络:合作研究:铁弹性应变玻璃建模
  • 批准号:
    1008349
  • 财政年份:
    2010
  • 资助金额:
    $ 60.6万
  • 项目类别:
    Continuing Grant
FRG: Microstructure Design of Advanced Multi-Domain Magnetic Materials Under Applied Fields
FRG:先进多畴磁性材料在应用领域的微结构设计
  • 批准号:
    9905725
  • 财政年份:
    2000
  • 资助金额:
    $ 60.6万
  • 项目类别:
    Continuing Grant
CAREER: Simulating the Evolution of Advanced Microstructure
职业:模拟先进微观结构的演化
  • 批准号:
    9703044
  • 财政年份:
    1997
  • 资助金额:
    $ 60.6万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于交易双方异质性的工程项目组织间协作动态耦合研究
  • 批准号:
    72301024
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向5G超高清移动视频传输的协作NOMA系统可靠性研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向协作感知车联网的信息分发时效性保证关键技术研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
数据物理驱动的车间制造服务协作可靠性机理与优化方法研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
医保基金战略性购买促进远程医疗协作网价值共创的制度创新研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    45 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
  • 批准号:
    2413579
  • 财政年份:
    2024
  • 资助金额:
    $ 60.6万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
  • 批准号:
    2409552
  • 财政年份:
    2024
  • 资助金额:
    $ 60.6万
  • 项目类别:
    Continuing Grant
Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys
合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计
  • 批准号:
    2411603
  • 财政年份:
    2024
  • 资助金额:
    $ 60.6万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Predicting Molecular Interactions to Stabilize Viral Therapies
合作研究:DMREF:预测分子相互作用以稳定病毒疗法
  • 批准号:
    2325392
  • 财政年份:
    2023
  • 资助金额:
    $ 60.6万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Topologically Designed and Resilient Ultrahigh Temperature Ceramics
合作研究:DMREF:拓扑设计和弹性超高温陶瓷
  • 批准号:
    2323458
  • 财政年份:
    2023
  • 资助金额:
    $ 60.6万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了