RI: Small: Collaborative Research: Robustness of spatial learning in flickering networks: the case of the hippocampus
RI:小:协作研究:闪烁网络中空间学习的鲁棒性:海马体的案例
基本信息
- 批准号:1422400
- 负责人:
- 金额:$ 23.02万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The reliability of our memories is nothing short of remarkable. Thousands of neurons die every day, synaptic connections appear and disappear, and the networks formed by these neurons constantly change due to various forms of synaptic plasticity. How can the brain develop a reliable representation of the world, learn and retain memories despite, or perhaps due to, such complex dynamics? Answering such questions is the natural evolution of recent work by the Dabaghian lab, which has been studying spatial cognition by modeling mechanisms of learning, based on algebraic topology methods developed by the Memoli group. This approach rests on the insight that the animal brain must first construct a rough-and-ready map of the environment before being able to fill it in with geometric details, which would be too computationally costly in light of typical navigational goals such as evading predators, returning to a nest, or finding a cafe. This basic map pays particular attention to the connectivity between places in the environment and is thus based on spatial topology; as such, the investigators hypothesized, it would be amenable to analysis by topological methods.By simulating exploratory movements through different environments Dabaghian and Memoli will study how stable topological features arise in assemblies of simulated neurons operating under a wide range of conditions, including variations in firing rate, the size of the space each cell "senses," the number of cells in the population, and electrical oscillations in the brain that alter the behavior of the ensemble. They will use several novel methods from Persistent Homology Theory to understand how connections between cells (synapses) influence the speed and reliability of spatial learning. One might assume that learning would be enhanced if synapses never disappeared, but biology has clearly evolved to favor great synaptic plasticity. One reason may be that the loss of certain connections allows more room for mistakes to be unlearned. The objectives of this project are to study synaptic plasticity in a computational model, which will allow the influences of different parameters on the outcome of learning to be studied in detail. Principles that emerge on spatial learning in the hippocampus should be translatable to spatial cognition in machines.
我们的记忆的可靠性是惊人的。每天有成千上万的神经元死亡,突触连接出现又消失,这些神经元形成的网络由于各种形式的突触可塑性而不断变化。尽管或可能由于如此复杂的动态变化,大脑如何能够发展出对世界的可靠表征,学习并保留记忆?回答这些问题是 Dabaghian 实验室最近工作的自然演变,该实验室一直在基于 Memoli 小组开发的代数拓扑方法,通过学习建模机制来研究空间认知。这种方法基于这样的见解:动物大脑必须首先构建一个粗略的环境地图,然后才能用几何细节填充它,考虑到典型的导航目标(例如躲避捕食者),这在计算上代价太大,返回巢穴,或寻找咖啡馆。该基本地图特别关注环境中地点之间的连通性,因此基于空间拓扑;因此,研究人员假设,它可以通过拓扑方法进行分析。通过模拟不同环境中的探索运动,Dabaghian 和 Memoli 将研究在各种条件下运行的模拟神经元集合中如何产生稳定的拓扑特征,包括变化放电率、每个细胞“感知”的空间大小、群体中细胞的数量以及改变整体行为的大脑中的电振荡。他们将使用持久同源理论中的几种新颖方法来了解细胞(突触)之间的连接如何影响空间学习的速度和可靠性。人们可能会认为,如果突触从未消失,学习能力就会得到增强,但生物学显然已经进化到有利于突触的巨大可塑性。原因之一可能是某些联系的丧失使得错误有更多的空间被遗忘。该项目的目标是研究计算模型中的突触可塑性,这将允许详细研究不同参数对学习结果的影响。海马体空间学习中出现的原理应该可以转化为机器的空间认知。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Facundo Memoli其他文献
The Wasserstein Transform
Wasserstein 变换
- DOI:
- 发表时间:
2019-01 - 期刊:
- 影响因子:0
- 作者:
Facundo Memoli; Zane Smith - 通讯作者:
Zane Smith
The Wasserstein Transform
Wasserstein 变换
- DOI:
- 发表时间:
2019-01 - 期刊:
- 影响因子:0
- 作者:
Facundo Memoli; Zane Smith - 通讯作者:
Zane Smith
Computing Generalized Rank Invariant for 2-Parameter Persistence Modules via Zigzag Persistence and Its Applications
基于 Zigzag 持久性计算 2 参数持久性模块的广义秩不变量及其应用
- DOI:
10.4230/lipics.socg.2022.34 - 发表时间:
2022-06 - 期刊:
- 影响因子:0
- 作者:
Tamal K. Dey;Woojin Kim;Facundo Memoli - 通讯作者:
Facundo Memoli
Facundo Memoli的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Facundo Memoli', 18)}}的其他基金
Collaborative Research: AF: Small: Graph Analysis: Integrating Metric and Topological Perspectives
合作研究:AF:小:图分析:整合度量和拓扑视角
- 批准号:
2310412 - 财政年份:2023
- 资助金额:
$ 23.02万 - 项目类别:
Standard Grant
Collaborative Research: Multiparameter Topological Data Analysis
合作研究:多参数拓扑数据分析
- 批准号:
2301359 - 财政年份:2023
- 资助金额:
$ 23.02万 - 项目类别:
Continuing Grant
RI: Medium:Collaborative Research: Through synapses to spatial learning: a topological approach
RI:媒介:协作研究:通过突触进行空间学习:拓扑方法
- 批准号:
1901360 - 财政年份:2019
- 资助金额:
$ 23.02万 - 项目类别:
Continuing Grant
TRIPODS: Topology, Geometry, and Data Analysis (TGDA@OSU):Discovering Structure, Shape, and Dynamics in Data
TRIPODS:拓扑、几何和数据分析 (TGDA@OSU):发现数据中的结构、形状和动力学
- 批准号:
1740761 - 财政年份:2017
- 资助金额:
$ 23.02万 - 项目类别:
Continuing Grant
Collaborative Research: The Topology of Functional Data on Random Metric Spaces, Graphs, and Graphons
协作研究:随机度量空间、图和图子上函数数据的拓扑
- 批准号:
1723003 - 财政年份:2017
- 资助金额:
$ 23.02万 - 项目类别:
Continuing Grant
相似国自然基金
ALKBH5介导的SOCS3-m6A去甲基化修饰在颅脑损伤后小胶质细胞炎性激活中的调控作用及机制研究
- 批准号:82301557
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
miRNA前体小肽miPEP在葡萄低温胁迫抗性中的功能研究
- 批准号:
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:
PKM2苏木化修饰调节非小细胞肺癌起始细胞介导的耐药生态位的机制研究
- 批准号:82372852
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于翻译组学理论探究LncRNA H19编码多肽PELRM促进小胶质细胞活化介导电针巨刺改善膝关节术后疼痛的机制研究
- 批准号:82305399
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
CLDN6高表达肿瘤细胞亚群在非小细胞肺癌ICB治疗抗性形成中的作用及机制研究
- 批准号:82373364
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: RI: Small: Motion Fields Understanding for Enhanced Long-Range Imaging
合作研究:RI:小型:增强远程成像的运动场理解
- 批准号:
2232298 - 财政年份:2023
- 资助金额:
$ 23.02万 - 项目类别:
Standard Grant
Collaborative Research: RI: Small: Foundations of Few-Round Active Learning
协作研究:RI:小型:少轮主动学习的基础
- 批准号:
2313131 - 财政年份:2023
- 资助金额:
$ 23.02万 - 项目类别:
Standard Grant
Collaborative Research: RI: Small: End-to-end Learning of Fair and Explainable Schedules for Court Systems
合作研究:RI:小型:法院系统公平且可解释的时间表的端到端学习
- 批准号:
2334936 - 财政年份:2023
- 资助金额:
$ 23.02万 - 项目类别:
Standard Grant
Collaborative Research: RI: Small: End-to-end Learning of Fair and Explainable Schedules for Court Systems
合作研究:RI:小型:法院系统公平且可解释的时间表的端到端学习
- 批准号:
2232054 - 财政年份:2023
- 资助金额:
$ 23.02万 - 项目类别:
Standard Grant
Collaborative Research: RI: Small: Motion Fields Understanding for Enhanced Long-Range Imaging
合作研究:RI:小型:增强远程成像的运动场理解
- 批准号:
2232300 - 财政年份:2023
- 资助金额:
$ 23.02万 - 项目类别:
Standard Grant