Numerical Analysis of Selected Variational and Quasi-variational Inequalities

选定变分和拟变分不等式的数值分析

基本信息

  • 批准号:
    1418784
  • 负责人:
  • 金额:
    $ 13.43万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-08-15 至 2017-07-31
  • 项目状态:
    已结题

项目摘要

Unilateral and constrained phenomena are ubiquitous in science and engineering. The quantities that govern a physical process are often subject to constraints: Be it of mechanical, physical, thermodynamical or practical nature. Examples of these can be impenetrability conditions (two bodies cannot be at the same place at the same time), the fact that mass cannot be negative and that entropy cannot decrease or simply the fact that we are not able to produce more than a fixed amount of forcing. In addition, many of these constraints might depend on the quantities of interest themselves (e.g. friction). One final example is mechanical contact which is, in fact, the only mechanism through which we can exert any mechanical action on another body. These examples show that the derivation of realistic models for the description of these phenomena is of fundamental importance in applications. However these models will be, as a rule, nonlinear. The development and analysis of numerical techniques for approximating the solution of these problems is of practical relevance.The models that govern constrained phenomena carry the name of variational and quasi-variational inequalities. This proposal aims at the study of numerical techniques for a collection of variational and quasi-variational inequalities which have not been considered before and to which the classical ideas and techniques do not apply. They include: variational inequalities for nonlocal operators, evolution problems for degenerate parabolic equations and the general study of time discretization techniques for quasi-variational inequalities. The numerical methods that will result from this project will be of interest to a wide range of practitioners, since the proposed problems have a wide range of applications. For instance, obstacle problems with fractional diffusion appear in control theory, fluid mechanics and even finance; the degenerate parabolic equations that will be considered find applications in imaging and materials science; the prototypical example of a quasi-variational inequality is friction, but they also arise in game theory - when trying to find Nash points - and in control theory when dealing with impulse controls.
单边和约束现象在科学和工程中普遍存在。控制物理过程的量通常受到限制:无论是机械、物理、热力学还是实际性质。例如,不可穿透条件(两个物体不能同时位于同一地点)、质量不能为负且熵不能减少的事实,或者仅仅是我们无法生产超过固定数量的事实的强迫。此外,许多这些约束可能取决于感兴趣的数量本身(例如摩擦力)。最后一个例子是机械接触,事实上,这是我们可以对另一个物体施加任何机械作用的唯一机制。这些例子表明,推导用于描述这些现象的现实模型在应用中至关重要。然而,这些模型通常是非线性的。用于逼近解决这些问题的数值技术的开发和分析具有实际意义。控制约束现象的模型具有变分和拟变分不等式的名称。该提案旨在研究一系列变分和准变分不等式的数值技术,这些不等式以前没有被考虑过,并且经典思想和技术不适用于这些不等式。它们包括:非局部算子的变分不等式、简并抛物型方程的演化问题以及拟变分不等式的时间离散技术的一般研究。该项目产生的数值方法将引起广泛的从业者的兴趣,因为所提出的问题具有广泛的应用范围。例如,分数扩散的障碍问题出现在控制理论、流体力学甚至金融领域;将考虑在成像和材料科学中找到应用的简并抛物线方程;准变分不等式的典型例子是摩擦,但它们也出现在博弈论中(试图找到纳什点时)以及控制论中处理脉冲控制时。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Abner Salgado其他文献

Abner Salgado的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Abner Salgado', 18)}}的其他基金

Approximation and Analysis of Selected Nonsmooth, Nonlinear, and Nonlocal Equations
选定的非光滑、非线性和非局部方程的逼近和分析
  • 批准号:
    2111228
  • 财政年份:
    2021
  • 资助金额:
    $ 13.43万
  • 项目类别:
    Standard Grant
The 50th John Barrett Memorial Lecture in 2020 on Approximation, Applications, and Analysis of Nonlocal, Nonlinear Models.
2020 年第 50 届 John Barrett 纪念讲座,主题为非局部非线性模型的逼近、应用和分析。
  • 批准号:
    2001695
  • 财政年份:
    2020
  • 资助金额:
    $ 13.43万
  • 项目类别:
    Standard Grant
Approximation of Singular Solutions to Nonlocal and Nonlinear Models
非局部和非线性模型奇异解的逼近
  • 批准号:
    1720213
  • 财政年份:
    2017
  • 资助金额:
    $ 13.43万
  • 项目类别:
    Continuing Grant

相似国自然基金

面向实时视频分析的端云协作无服务器计算资源管理方法研究
  • 批准号:
    62302292
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基因调控网络的系统性摄动分析及其应用
  • 批准号:
    12371497
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
南极冰层边缘不稳定性的长时序跨周期分析关键技术研究
  • 批准号:
    42301149
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
多信号协同响应的核酸组分动态网络分析新方法研究
  • 批准号:
    22304023
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
声子晶体特征值问题的高效计算及分析
  • 批准号:
    12371377
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目

相似海外基金

Functionally distinct human CD4 T cell responses to novel evolutionarily selected M. tuberculosis antigens
功能独特的人类 CD4 T 细胞对新型进化选择的结核分枝杆菌抗原的反应
  • 批准号:
    10735075
  • 财政年份:
    2023
  • 资助金额:
    $ 13.43万
  • 项目类别:
Combining native protein mass spectrometry with serial electron diffraction to solve atomic structures of mass selected macromolecules
将天然蛋白质质谱与串行电子衍射相结合来解析质量选择的大分子的原子结构
  • 批准号:
    10637752
  • 财政年份:
    2023
  • 资助金额:
    $ 13.43万
  • 项目类别:
Selected Topics in Geometric Analysis
几何分析精选主题
  • 批准号:
    RGPIN-2016-03709
  • 财政年份:
    2021
  • 资助金额:
    $ 13.43万
  • 项目类别:
    Discovery Grants Program - Individual
Approximation and Analysis of Selected Nonsmooth, Nonlinear, and Nonlocal Equations
选定的非光滑、非线性和非局部方程的逼近和分析
  • 批准号:
    2111228
  • 财政年份:
    2021
  • 资助金额:
    $ 13.43万
  • 项目类别:
    Standard Grant
Selected topics in harmonic analysis
谐波分析精选主题
  • 批准号:
    RGPIN-2017-03752
  • 财政年份:
    2021
  • 资助金额:
    $ 13.43万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了