Collaborative Research: Fluctuating Hydrodynamics of Suspensions of Rigid Bodies
合作研究:刚体悬架的脉动流体动力学
基本信息
- 批准号:1418706
- 负责人:
- 金额:$ 25.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-07-01 至 2017-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Over the last decade there has been rapid progress in the manufacturing and design of materials and devices that employ small-scale active particles to produce novel physical behaviours such as self-organizing flows (e.g., active colloidal suspensions), or to perform specific tasks such as cargo transport (e.g., targeted drug delivery). While much progress has been made experimentally, theoretical and computational modelling lags behind, due to the difficulty in designing suitable numerical algorithms and the lack of public-domain codes capable of capturing the complex multi-physics of active propulsion. In this work we develop novel computational methods for simulating active-particles suspended in fluid, and implement the developed techniques in the public-domain code IBAMR, therefore making them available to applied researchers in physics and engineering. A specific distinguishing aspect of the work is the consistent inclusion of the random Brownian motion necessarily present when dealing with small-scale flows due to the small numbers of molecules involved in the process. Such stochastic effects are important in flows at micro and nano scales typical of nano- and micro-fluidic and microelectromechanical devices, novel materials such as nanofluids, and biological systems such as lipid membranes, Brownian molecular motors, and nanopores. We therefore expect the work to have a broad range of applications in science and engineering, beyond the specific research goals detailed below. The scientific component of this project will be supplemented by an educational and outreach component, including the development and enrichment of new graduate courses, such as Coarse Grained Modeling of Materials, which will include training in statistical mechanics, applied stochastic analysis, fluid dynamics, and high-performance computing.This collaborative project focuses on computational methods for problems involving Brownian rigid and semi-rigid structures immersed in a fluid. Examples include colloidal particles, polymer chains, and macromolecules in a solvent. We aim to develop novel methods for fluid-structure coupling at small Reynolds numbers that consistently include the effects of thermal fluctuations. At small scales, the motion of immersed structures is driven by thermal fluctuations, giving rise to Brownian motion strongly affected by hydrodynamic effects. We plan to develop methods that couple an immersed-boundary Lagrangian representation of rigid bodies to a fluctuating finite-volume fluid solver. Unlike commonly-used methods based on Green's functions, we rely on an explicit-fluid fluctuating hydrodynamics formulation in which we add a stochastic stress tensor to the usual viscous stress tensor. We will handle complex rigid (e.g., synthetic nanorods) and semi-rigid (e.g., short DNA segments) bodies by composing each structure from a collection of spherical particles constrained to move (semi)rigidly. The underlying fluctuating hydrodynamics formulation automatically ensures the correct translational and rotational Brownian motion. The novel methods developed in this project will build upon prior work by the PIs and enable simulations of the long-time diffusive (Brownian) dynamics of the immersed structures. In particular, we will develop, implement, and apply computational methods that: (1) do not employ time splitting and are thus suitable for the steady Stokes (viscous-dominated or low Reynolds number) regime; (2) strictly enforce the rigidity constraint; and, (3) ensure fluctuation-dissipation balance in the overdamped limit even in the presence of nontrivial boundary conditions.
在过去的十年中,材料和设备的制造和设计取得了快速进展,这些材料和设备采用小尺寸活性颗粒来产生新颖的物理行为,例如自组织流(例如活性胶体悬浮液),或执行特定任务,例如作为货物运输(例如,靶向药物输送)。尽管在实验上取得了很大进展,但由于设计合适的数值算法困难以及缺乏能够捕获主动推进的复杂多物理场的公共领域代码,理论和计算建模仍然滞后。在这项工作中,我们开发了用于模拟悬浮在流体中的活性粒子的新颖计算方法,并在公共领域代码 IBAMR 中实施开发的技术,从而使它们可供物理和工程领域的应用研究人员使用。这项工作的一个具体区别方面是,由于参与该过程的分子数量较少,因此在处理小规模流动时必然存在随机布朗运动。这种随机效应对于纳米和微流体和微机电装置、纳米流体等新型材料以及脂质膜、布朗分子马达和纳米孔等生物系统的典型微米和纳米尺度流动非常重要。因此,我们期望这项工作在科学和工程领域有广泛的应用,超出下面详述的具体研究目标。该项目的科学部分将得到教育和外展部分的补充,包括开发和丰富新的研究生课程,例如材料的粗粒度建模,其中包括统计力学、应用随机分析、流体动力学和高性能计算。该合作项目重点关注涉及浸没在流体中的布朗刚性和半刚性结构问题的计算方法。例子包括溶剂中的胶体颗粒、聚合物链和大分子。我们的目标是开发小雷诺数下的流固耦合新方法,始终包含热波动的影响。在小尺度上,浸没结构的运动是由热波动驱动的,从而产生受流体动力效应强烈影响的布朗运动。我们计划开发将刚体的浸入边界拉格朗日表示与波动有限体积流体求解器耦合的方法。与基于格林函数的常用方法不同,我们依赖于显式流体脉动流体动力学公式,其中我们将随机应力张量添加到通常的粘性应力张量中。我们将通过由限制(半)刚性移动的球形颗粒集合组成每个结构来处理复杂的刚性(例如,合成纳米棒)和半刚性(例如,短DNA片段)物体。底层的脉动流体动力学公式自动确保正确的平移和旋转布朗运动。该项目中开发的新颖方法将建立在 PI 先前工作的基础上,并能够模拟浸没结构的长期扩散(布朗)动力学。特别是,我们将开发、实现和应用以下计算方法:(1)不采用时间分割,因此适合稳定斯托克斯(粘性主导或低雷诺数)状态; (二)严格执行刚性约束; (3) 即使存在重要边界条件,也能确保过阻尼极限内的波动耗散平衡。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Aleksandar Donev其他文献
Aleksandar Donev的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Aleksandar Donev', 18)}}的其他基金
Fast Electrostatics and Brownian Hydrodynamics in Doubly-Periodic Geometries
双周期几何中的快速静电和布朗流体动力学
- 批准号:
2011544 - 财政年份:2020
- 资助金额:
$ 25.22万 - 项目类别:
Standard Grant
Collaborative Research: Active Colloids under AC Electric Fields: From Single Particle Motion to Collective Dynamics
合作研究:交流电场下的活性胶体:从单粒子运动到集体动力学
- 批准号:
1804940 - 财政年份:2018
- 资助金额:
$ 25.22万 - 项目类别:
Standard Grant
RTG: Research Training Group in Mathematical Modeling and Simulation
RTG:数学建模与仿真研究培训小组
- 批准号:
1646339 - 财政年份:2017
- 资助金额:
$ 25.22万 - 项目类别:
Continuing Grant
Magnetic microrollers as a platform for active transport
磁性微滚轮作为主动运输的平台
- 批准号:
1706562 - 财政年份:2017
- 资助金额:
$ 25.22万 - 项目类别:
Standard Grant
Computer simulations of giant fluctuations in mixing fluids
混合流体巨大波动的计算机模拟
- 批准号:
1115341 - 财政年份:2011
- 资助金额:
$ 25.22万 - 项目类别:
Continuing Grant
相似国自然基金
一类双色散非局部波动方程初值问题的理论研究
- 批准号:12301272
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
激光定向能量沉积中熔池波动信息高时空分辨测量方法研究
- 批准号:12302239
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
随机阻尼波动方程的高效保结构算法研究
- 批准号:12301518
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
气候变化对风光资源波动性影响评估及多能融合政策研究
- 批准号:72371142
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
无基底薄膜受压失稳动力学机制及深度皱曲状态下的波动特性研究
- 批准号:12372099
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: The dynamic iron curtain surrounding fluctuating rivers and its impacts on arsenic fate and transport
合作研究:波动河流周围的动态铁幕及其对砷归宿和迁移的影响
- 批准号:
1852652 - 财政年份:2019
- 资助金额:
$ 25.22万 - 项目类别:
Standard Grant
Collaborative Research: The dynamic iron curtain surrounding fluctuating rivers and its impacts on arsenic fate and transport
合作研究:波动河流周围的动态铁幕及其对砷归宿和迁移的影响
- 批准号:
1852651 - 财政年份:2019
- 资助金额:
$ 25.22万 - 项目类别:
Standard Grant
Collaborative Research: The dynamic iron curtain surrounding fluctuating rivers and its impacts on arsenic fate and transport
合作研究:波动河流周围的动态铁幕及其对砷归宿和迁移的影响
- 批准号:
1852653 - 财政年份:2019
- 资助金额:
$ 25.22万 - 项目类别:
Standard Grant
Collaborative Research: The dynamic iron curtain surrounding fluctuating rivers and its impacts on arsenic fate and transport
合作研究:波动河流周围的动态铁幕及其对砷归宿和迁移的影响
- 批准号:
1940772 - 财政年份:2019
- 资助金额:
$ 25.22万 - 项目类别:
Standard Grant
Collaborative Research: The interplay between fluctuating selection on symbionts and life cycle evolution in sap-sucking insects
合作研究:共生体波动选择与吸汁昆虫生命周期进化之间的相互作用
- 批准号:
1655177 - 财政年份:2017
- 资助金额:
$ 25.22万 - 项目类别:
Standard Grant