Conference ``Geometric and Asymptotic Group Theory with Applications'', July 21-25, 2014
会议“几何和渐近群理论及其应用”,2014 年 7 月 21-25 日
基本信息
- 批准号:1417094
- 负责人:
- 金额:$ 2.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-07-01 至 2015-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The conference "Geometric and Asymptotic Group Theory with Applications" will take place in Newcastle NSW, Australia, on July 21-25, 2014. The meeting will attract the world's leading researchers in geometric and asymptotic group theory. This award is for support of some of the American participants, invited speakers and graduate students. The technological and societal impact of the proposed conference stems from potential wide applications to electronic communication and information security. There are also applications to computer science and complexity theory. The educational impact comes from the involvement of students and young researchers."Geometric and Asymptotic Group Theory with Applications" conferences are devoted to the study of a variety of areas in geometric and combinatorial group theory, including asymptotic and probabilistic methods, as well as algorithmic and computational topics involving groups. In particular, areas of interest include group actions, isoperimetric functions, growth, asymptotic invariants, random walks, algebraic geometry over groups, algorithmic problems and their complexity, generic properties and generic complexity, and applications to non-commutative cryptography. The meeting is timed to precede the ICM in Korea in August, with two satellite meetings held in Japan and Korea starting Jul 30 that will be of interest to some participants.More information can be found on the homepage of the conference:https://sites.google.com/site/gagta8/
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Olga Kharlampovitch其他文献
Olga Kharlampovitch的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Olga Kharlampovitch', 18)}}的其他基金
Collaborative research: model theory and algebraic geometry in groups and algebras, non-standard actions, algorithmic problems
合作研究:群和代数中的模型理论和代数几何、非标准动作、算法问题
- 批准号:
1201379 - 财政年份:2012
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
相似国自然基金
多物理目标驱动的多尺度几何建模与优化
- 批准号:62302275
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
流固复合膜的几何非线性弹性
- 批准号:12374210
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
奇异黎曼叶状结构的微分几何学研究
- 批准号:12371048
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
拓扑棱态的微观几何性质及其在非线性光响应中的特征
- 批准号:12374164
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
离心叶轮冷热态双重不确定性几何变形的流动机理及鲁棒设计方法
- 批准号:52376030
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
相似海外基金
Conference: Geometric and Asymptotic Group Theory with Applications 2024
会议:几何和渐近群理论及其应用 2024
- 批准号:
2403833 - 财政年份:2024
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
Conference: Geometric and Asymptotic Group Theory with Applications 2023
会议:几何和渐近群理论及其应用 2023
- 批准号:
2311110 - 财政年份:2023
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
International Conference on Geometric and Asymptotic Group Theory with Applications
几何和渐近群理论及其应用国际会议
- 批准号:
1928295 - 财政年份:2019
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
Conference on Geometric and Asymptotic Group Theory with Applications
几何和渐近群理论及其应用会议
- 批准号:
1565874 - 财政年份:2016
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
Conference: Geometric and Asymptotic Group Theory with Applications, September 15-19, New York, NY
会议:几何和渐近群理论及其应用,9 月 15 日至 19 日,纽约州纽约
- 批准号:
0805552 - 财政年份:2008
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant