Collaborative Research: Designs and Theory of State-Constrained Nonlinear Feedback Controls for Delay and Partial Differential Equation Systems

合作研究:时滞和偏微分方程系统的状态约束非线性反馈控制的设计和理论

基本信息

  • 批准号:
    1408376
  • 负责人:
  • 金额:
    $ 21万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-09-01 至 2018-08-31
  • 项目状态:
    已结题

项目摘要

Collaborative Research: Designs and Theory of State-Constrained Nonlinear Feedback Controls for Delay and Partial Differential Equation SystemsControl systems are used to model many important engineering systems, such as electronics manufacturing processes involving lasers, marine robots that can monitor water pollution, oil drilling and refining, and rehabilitation mechanisms for patients with mobility disorders. However, many of these engineering applications involve input delays, state constraints, and uncertainties that can put them outside the scope of existing controller designs and theory. State constraints occur when the control objectives include avoiding undesirable situations such as collisions with obstacles, while input delays often arise from sensor designs or transport phenomena that make it difficult to measure the current state of the system. Also, it is inherent in many engineering applications that the control mechanisms must be autonomous. One important technique for ensuring autonomy is by using feedback control, which means that the control values must be determined from past values of the state of the system. This project will develop cutting edge feedback control designs and theory that can help address the preceding challenges, and will demonstrate the techniques in real time experiments. One key technique will involve prediction, which provides a way to use past observations from the control system to compute future states of the dynamics and future control values, even when the system involves long input delays or considerable uncertainty. As reflected in the backgrounds of the PIs, the project combines insightful engineering with sophisticated mathematics, with the goal of producing practically useful controls that have rigorous performance guarantees under delays or state constraints. The problems to be addressed are among the most challenging and significant ones in the control engineering community. The project will strive for transformative methods, and will pursue three theoretical strategies. The first will seek generalized Lyapunov function constructions for partial differential equations, which can include extensions of current approach for building strict Lyapunov functions for ordinary differential equations to much more difficult hyperbolic partial differential equation cases. The second strategy will involve representing robust predictive controls as solutions of integral delay equations, and a dual representation in terms of perturbed first-order hyperbolic partial differential equations. Combined with the Lyapunov function constructions, this can provide robust tracking for predictively controlled nonlinear ordinary differential equations and robustness results for the corresponding partial differential equations. The third strategy will use robust forward invariance, which involves specifying the state constraints to facilitate computing maximal allowable perturbation sets to ensure safe operation under uncertainty. The project will be guided by cutting edge engineering applications, to help ensure the practical usefulness of all of the project results. The ordinary differential equation applications will involve neuromuscular electrical stimulation, which is a rehabilitation method that can help restore movement in humans with motor neuron disorders, and the control of a class of autonomous marine robots that are used for bathymetric surveys or to monitor water quality. The partial differential equation applications will involve laser pulse shaping systems that are used in the manufacture of flat panel displays or in photolithography, and a multi-phase flow system that can help mitigate the adverse effects of slugging in oil production.
合作研究:延迟和偏微分方程系统的状态约束非线性反馈控制的设计和理论控制系统用于对许多重要的工程系统进行建模,例如涉及激光的电子制造过程、可以监测水污染的海洋机器人、石油钻探和炼油,以及行动障碍患者的康复机制。然而,许多工程应用涉及输入延迟、状态约束和不确定性,这些可能使它们超出现有控制器设计和理论的范围。当控制目标包括避免与障碍物碰撞等不良情况时,就会出现状态约束,而输入延迟通常由传感器设计或传输现象引起,导致难以测量系统的当前状态。此外,许多工程应用中固有的控制机制必须是自主的。 确保自主性的一项重要技术是使用反馈控制,这意味着控制值必须根据系统状态的过去值来确定。该项目将开发尖端的反馈控制设计和理论,帮助解决上述挑战,并将在实时实验中展示这些技术。一项关键技术涉及预测,它提供了一种使用控制系统过去的观察来计算动态的未来状态和未来控制值的方法,即使系统涉及长输入延迟或相当大的不确定性。正如 PI 的背景所反映的那样,该项目将富有洞察力的工程与复杂的数学相结合,其目标是产生实用的控制,这些控制在延迟或状态约束下具有严格的性能保证。要解决的问题是控制工程界最具挑战性和最重要的问题之一。该项目将努力寻求变革方法,并将追求三种理论策略。第一个将寻求偏微分方程的广义李亚普诺夫函数构造,其中可以包括将用于为常微分方程构造严格李亚普诺夫函数的当前方法扩展到更困难的双曲偏微分方程情况。第二种策略将涉及将鲁棒预测控制表示为积分延迟方程的解,以及扰动一阶双曲偏微分方程的对偶表示。与李亚普诺夫函数构造相结合,这可以为预测控制的非线性常微分方程提供鲁棒跟踪,并为相应的偏微分方程提供鲁棒结果。第三种策略将使用鲁棒的前向不变性,其中涉及指定状态约束以促进计算最大允许扰动集以确保不确定性下的安全操作。该项目将以最先进的工程应用为指导,以帮助确保所有项目成果的实际用途。常微分方程的应用将涉及神经肌肉电刺激,这是一种康复方法,可以帮助患有运动神经元疾病的人类恢复运动,以及用于水深测量或监测水质的一类自主海洋机器人的控制。偏微分方程应用将涉及用于平板显示器制造或光刻的激光脉冲整形系统,以及有助于减轻石油生产中段塞的不利影响的多相流系统。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Miroslav Krstic其他文献

A Complete Inverse Optimality Study for a Tank-Liquid System
罐液系统的完整逆优化研究
  • DOI:
    10.48550/arxiv.2405.16535
  • 发表时间:
    2024-05-26
  • 期刊:
  • 影响因子:
    0
  • 作者:
    I. Karafyllis;Filippos Vokos;Miroslav Krstic
  • 通讯作者:
    Miroslav Krstic
PDE Control Gym: A Benchmark for Data-Driven Boundary Control of Partial Differential Equations
PDE Con​​trol Gym:偏微分方程数据驱动边界控制的基准
  • DOI:
    10.48550/arxiv.2405.11401
  • 发表时间:
    2024-05-18
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Luke Bhan;Yuexin Bian;Miroslav Krstic;Yuanyuan Shi
  • 通讯作者:
    Yuanyuan Shi
Exponential Extremum Seeking with Unbiased Convergence
无偏收敛的指数极值搜索
Predictor-feedback for multi-input LTI systems with distinct delays
具有不同延迟的多输入 LTI 系统的预测器反馈
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Daisuke Tsubakino; Tiago Roux Oliveira;Miroslav Krstic
  • 通讯作者:
    Miroslav Krstic
Newton-Based Stochastic Extremum Seeking
基于牛顿的随机极值搜索
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Shu-Jun Liu;Miroslav Krstic
  • 通讯作者:
    Miroslav Krstic

Miroslav Krstic的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Miroslav Krstic', 18)}}的其他基金

Collaborative Research: EPCN: Distributed Optimization-based Control of Large-Scale Nonlinear Systems with Uncertainties and Application to Robotic Networks
合作研究:EPCN:基于分布式优化的大型不确定性非线性系统控制及其在机器人网络中的应用
  • 批准号:
    2210315
  • 财政年份:
    2022
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Prescribed-Time Stabilization and Robust Safety
规定时间稳定和鲁棒安全性
  • 批准号:
    2151525
  • 财政年份:
    2022
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Collaborative Research: Decentralized Adaptive and Extremum Seeking Control of Robot Manipulators Using Image Processing
协作研究:使用图像处理的机器人机械手的分散自适应和极值搜索控制
  • 批准号:
    1823983
  • 财政年份:
    2018
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Smart and Connected Communities- Perspectives for Border Communities
智能互联社区——边境社区的视角
  • 批准号:
    1833482
  • 财政年份:
    2018
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Smart and Connected Communities- Perspectives for Border Communities
智能互联社区——边境社区的视角
  • 批准号:
    1833482
  • 财政年份:
    2018
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Collaborative Research: Sequential Predictors for Partial Differential Equation and Delay Systems: Designs, Theory, and Applications
合作研究:偏微分方程和延迟系统的序贯预测器:设计、理论和应用
  • 批准号:
    1711373
  • 财政年份:
    2017
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Control of Screw Extruder Delay/Partial Differential Equation (PDE) Dynamics for 3D Printing
3D 打印螺杆挤出机延迟/偏微分方程 (PDE) 动力学控制
  • 批准号:
    1562366
  • 财政年份:
    2016
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
GOALI: PDE Techniques for Battery Management Systems
目标:电池管理系统的 PDE 技术
  • 批准号:
    1002299
  • 财政年份:
    2010
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Control, Optimization, and Functional Analysis: Synergies and Perspectives; October 2-3, 2010; San Diego, CA
控制、优化和功能分析:协同作用和前景;
  • 批准号:
    1026117
  • 财政年份:
    2010
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Horizons in Infinite Dimensional Deterministic and Stochastic Systems with Applications to Engineering; Winter 2009, Los Angeles, CA
无限维确定性和随机系统的视野及其工程应用;
  • 批准号:
    0838173
  • 财政年份:
    2008
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant

相似国自然基金

选区激光熔化用高耐热高强镍基高温合金设计与高温强韧化机理研究
  • 批准号:
    52371012
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
面向人机交互的磁流变柔顺执行器优化设计方法与磁滞补偿控制研究
  • 批准号:
    52305064
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
防/除海洋生物粘附高耐久涂层的仿生设计和制造研究
  • 批准号:
    52375296
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
碳基电磁屏蔽复合材料的双层结构设计及其吸收行为研究
  • 批准号:
    52302364
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
非刚性折叠超材料的设计理论和力学性能研究
  • 批准号:
    52373293
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Material Simulation-driven Electrolyte Designs in Intermediate-temperature Na-K / S Batteries for Long-duration Energy Storage
合作研究:用于长期储能的中温Na-K / S电池中材料模拟驱动的电解质设计
  • 批准号:
    2341994
  • 财政年份:
    2024
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Collaborative Research: Material Simulation-driven Electrolyte Designs in Intermediate-temperature Na-K / S Batteries for Long-duration Energy Storage
合作研究:用于长期储能的中温Na-K / S电池中材料模拟驱动的电解质设计
  • 批准号:
    2341995
  • 财政年份:
    2024
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Small: Understanding the Limitations of Wireless Network Security Designs Leveraging Wireless Properties: New Threats and Defenses in Practice
协作研究:SaTC:核心:小型:了解利用无线特性的无线网络安全设计的局限性:实践中的新威胁和防御
  • 批准号:
    2316720
  • 财政年份:
    2023
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Collaborative Research: DMS/NIGMS 1: Identifiability investigation of Multi-scale Models of Infectious Diseases
合作研究:DMS/NIGMS 1:传染病多尺度模型的可识别性研究
  • 批准号:
    10794480
  • 财政年份:
    2023
  • 资助金额:
    $ 21万
  • 项目类别:
Collaborative Research: SaTC: CORE: Medium: Hardware Security Insights: Analyzing Hardware Designs to Understand and Assess Security Weaknesses and Vulnerabilities
协作研究:SaTC:核心:中:硬件安全见解:分析硬件设计以了解和评估安全弱点和漏洞
  • 批准号:
    2247756
  • 财政年份:
    2023
  • 资助金额:
    $ 21万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了