Applications of geometric analysis to general relativity and geometric flows
几何分析在广义相对论和几何流中的应用
基本信息
- 批准号:1405152
- 负责人:
- 金额:$ 21.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-08-01 至 2018-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractAward: DMS 1405152, Principal Investigator: Mu-Tao WangThe principal investigator proposes to study the notions of mass, energy, angular momentum, and center of mass in general relativity. These notions are of most fundamental importance in any branch of physics. However, since Einstein's time, there has been great difficulty to find physically acceptable definitions of these concepts for gravitation. The solutions of many unsolved problems such as how a black hole forms and how black holes collide rely essentially on these notions. Recently, the principal investigator and his collaborators successfully discovered definitions for both isolated systems (e.g. when the observer is very far away from a star) and non-isolated systems (e.g. when the observer is at close range with two stars rotating about each other ). The definitions they found satisfy many highly desirable properties, including the first precise dynamical description of Einstein's equation.This proposal describe plans to further explore these new definitions and their applications. The results obtained in this project are expected to be crucial steps towards deeper understanding of the universe in a large scale. The principal investigator also proposes to study geometric flows. These are differential equations that model how a geometric shape deforms and evolves to an optimal form in the most efficient way. The proposed research is expected to have applications in general relativity and mathematical physics. Another line of investigation will study applications of quasi-local mass and quasi-local conserved quantities such as angular momentum and center of mass, which he recently discovered with his collaborators, aiming to anchor and resolve several problems in classical general relativity. Immediate goals of this proposal include resolving the invariant mass conjecture in general relativity, justification of the definitions of conserved quantities at both the quasi-local and total levels, and applications in the study of the dynamics of the Einstein equation. The principal investigator will also continue his research on inverse mean curvature flows and mean curvature flows. Immediate goals include the proof of a Gibbons-Penrose inequality in Schwarzschild spacetime and the dynamical stability of the mean curvature flow.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mu-Tao Wang其他文献
Mu-Tao Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mu-Tao Wang', 18)}}的其他基金
Mass/Momentum beyond Classical Gravity and Submanifolds of Higher Codimensions
超越经典引力的质量/动量和更高维数的子流形
- 批准号:
2104212 - 财政年份:2021
- 资助金额:
$ 21.5万 - 项目类别:
Standard Grant
Mass/Momentum beyond Classical Gravity and Submanifolds of Higher Codimensions
超越经典引力的质量/动量和更高维数的子流形
- 批准号:
2104212 - 财政年份:2021
- 资助金额:
$ 21.5万 - 项目类别:
Standard Grant
Problems in General Relativity and Geometric Flows
广义相对论和几何流问题
- 批准号:
1810856 - 财政年份:2018
- 资助金额:
$ 21.5万 - 项目类别:
Continuing Grant
Problems in general relativity and geometric flows
广义相对论和几何流中的问题
- 批准号:
1105483 - 财政年份:2011
- 资助金额:
$ 21.5万 - 项目类别:
Standard Grant
Geometric analysis problems related to surfaces in mathematical physics
数学物理中与曲面相关的几何分析问题
- 批准号:
0904281 - 财政年份:2009
- 资助金额:
$ 21.5万 - 项目类别:
Standard Grant
Geometry and PDE of submanifolds of higher codimensions
高余维子流形的几何和偏微分方程
- 批准号:
0605115 - 财政年份:2006
- 资助金额:
$ 21.5万 - 项目类别:
Continuing Grant
Mean curvature flows in higher codimensions
较高余维中的平均曲率流
- 批准号:
0306049 - 财政年份:2003
- 资助金额:
$ 21.5万 - 项目类别:
Standard Grant
相似国自然基金
基于等几何分析的几何建模及其在结构优化设计中的应用
- 批准号:12371383
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
复分析与分形几何交叉研究的几个问题
- 批准号:12371072
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
离散空间上的几何分析理论及其应用
- 批准号:12301064
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
哈密翼龙飞行适应研究——基于颅内模和内耳骨迷路的CT数据及几何形态分析
- 批准号:42302003
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于几何向量的地形分析模型研究
- 批准号:42371407
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Asymptotic Geometric Analysis, Random Matrices, and Applications
渐近几何分析、随机矩阵及其应用
- 批准号:
RGPIN-2022-03483 - 财政年份:2022
- 资助金额:
$ 21.5万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: Probabilistic, Geometric, and Topological Analysis of Neural Networks, From Theory to Applications
合作研究:神经网络的概率、几何和拓扑分析,从理论到应用
- 批准号:
2133806 - 财政年份:2022
- 资助金额:
$ 21.5万 - 项目类别:
Standard Grant
Collaborative Research: Probabilistic, Geometric, and Topological Analysis of Neural Networks, From Theory to Applications
合作研究:神经网络的概率、几何和拓扑分析,从理论到应用
- 批准号:
2133861 - 财政年份:2022
- 资助金额:
$ 21.5万 - 项目类别:
Standard Grant
Asymptotic Geometric Analysis, Random Matrices, and Applications
渐近几何分析、随机矩阵及其应用
- 批准号:
RGPIN-2022-03483 - 财政年份:2022
- 资助金额:
$ 21.5万 - 项目类别:
Discovery Grants Program - Individual
Conference: Geometric Applications of Microlocal Analysis
会议:微局部分析的几何应用
- 批准号:
2210936 - 财政年份:2022
- 资助金额:
$ 21.5万 - 项目类别:
Standard Grant