Collaborative Research: Design of Redox-Active Molybdenum Metalloproteins
合作研究:氧化还原活性钼金属蛋白的设计
基本信息
- 批准号:1403663
- 负责人:
- 金额:$ 21.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-07-01 至 2018-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Proposal Numbers: 1403532 / 1403663PI's: Zondlo, Neal J. / Kuhlman, BrianInstitutions: University of Delaware / University of North Carolina at Chapel HillTitle: Collaborative Research: Design of Redox-Active Molybdenum MetalloproteinsNitrogen is a critical component of DNA and proteins and is essential for all forms of life. However, most organisms cannot make use of the nitrogen gas (N2) that makes up 78% of our atmosphere. Nitrogen gas must be "fixed" to reduced forms such as ammonia (NH3) before it can be metabolized by plants and animals. This process is accomplished in nature by bacteria that live symbiotically with plants. Synthetic nitrogen fixation, performed at high temperatures and high pressures via the Haber-Bosch process, is central to the production of fertilizers, allowing the planet to sustain far larger populations than was possible prior, at the cost of 1.5% of the planet's total energy use. Nitrogenases are molybdenum-containing proteins employed by nitrogen-fixing bacteria to accomplish nitrogen fixation in water at ambient temperature and pressure, in contrast to the harsh and energy-intensive conditions of the Haber-Bosch process. Nitrogenases are also capable of reacting with carbon dioxide (i.e. conducting carbon sequestration) and carbon monoxide, reducing them to molecules that can be used as liquid fuels and feedstock chemicals. However, nitrogenases are large proteins (approximately 2000 amino acids), which prevents their application as isolated proteins. In this work, the investigators will develop synthetic proteins, only 2%-4% of the size of nitrogenase, that can bind molybdenum and react with molecules in a manner analogous to that of nitrogenases. The basis of this work is the development of novel amino acids that can both bind to molybdenum and donate electrons to the metal to engage in reaction chemistry at the molybdenum metal center, combined with computational protein design to allow the incorporation of these unnatural amino acids within a well-defined and stable protein structure that will support strong metal binding and reaction chemistry. These designed molybdenum proteins will be analyzed and characterized for their structure and ability to conduct reaction chemistry, both to understand how native molybdenum proteins can conduct important reactions and as a first step toward their potential use in processes critical to problems in energy use. This work will address critical processes central to the nitrogen cycle, the carbon cycle, energy, and sustainability, providing new insights into processes of broad fundamental importance. In the long term, this work could lead toward novel sustainable solutions to reduce energy use and synthesize feedstock chemicals from non-petroleum sources. This work will train undergraduate and graduate students in highly multidisciplinary methods, including computational protein design, peptide synthesis and characterization, organic synthesis on functional-group rich substrates, training them for integrated multidisciplinary science of the 21st century. Nitrogen fixation, the reduction of atmospheric nitrogen to ammonia, is one of the most significant processes on the planet. Nitrogen fixation is accomplished by bacteria containing the enzyme nitrogenase, a large (~2000 amino acids) enzyme containing molybdenum or vanadium and a unique iron-sulfur cluster. The accomplishment of this ancient process under mild conditions has to date never been achieved in proteins outside the native nitrogenase proteins. As inspiration, catalytic nitrogen fixation has been demonstrated using synthetic molybdenum complexes with small molecule ligands. Toward the goal of developing redox-active proteins capable of reaction chemistry similar to nitrogenase, the team will develop a synthetic molybdenum metalloprotein containing novel redox-active amino acids capable of greater electron donor ability than the native 20 amino acids. Nitrogenases and synthetic analogues accomplish dinitrogen reduction (a six-electron, six-proton process) in part due to the multiple oxidation states readily available to molybdenum (Mo(III) to Mo(VI)), plus the presence of strong electron donor ligands, including the iron-sulfur-carbide cluster. Nitrogenases and organomolybdenum complexes can also reduce electronically related compounds such as diimides (including diazine HN=NH), hydrazines (H2N-NH2), and cyanide. This work aims to develop new approaches to allow the reduction of simple compounds using synthetic proteins and provide fundamental insights into the design of catalytically active proteins. The investigators will design synthetic proteins with redox-active side chains that are not found in naturally occurring proteins and readily bind to molybdenum, vanadium and tungsten, allowing multi-electron reductions of dinitrogen and related molecules. The metal-binding properties of these designed proteins will be characterized in different metal redox states using electrochemical, biophysical, and structural methods. The designed redox-active metalloproteins will be examined for reactivity toward reduction of a series of pi-bonded compounds.This award by the Biotechnology, Biochemical, and Biomass Engineering Program of the CBET Division is co-funded by the Systems and Synthetic Biology Program of the Division of Molecular and Cellular Biology.
提案编号:1403532 / 1403663PI:Zondlo, Neal J. / Kuhlman, Brian机构:特拉华大学/北卡罗来纳大学教堂山分校标题:合作研究:氧化还原活性钼金属蛋白的设计氮是 DNA 和蛋白质的关键组成部分,是必不可少的对于所有形式的生命。 然而,大多数生物体无法利用占大气 78% 的氮气 (N2)。氮气必须被“固定”为还原形式,例如氨 (NH3),然后才能被植物和动物代谢。这个过程在自然界中是由与植物共生的细菌完成的。通过哈伯-博世工艺在高温高压下进行的合成固氮是化肥生产的核心,它使地球能够维持比以前更多的人口,而成本却占地球总能源的 1.5%使用。固氮酶是固氮细菌用来在环境温度和压力下完成水中固氮的含钼蛋白质,这与哈伯-博世工艺的恶劣和能源密集型条件相反。固氮酶还能够与二氧化碳(即进行碳封存)和一氧化碳反应,将它们还原成可用作液体燃料和原料化学品的分子。然而,固氮酶是大蛋白质(大约 2000 个氨基酸),这阻碍了它们作为分离蛋白质的应用。在这项工作中,研究人员将开发合成蛋白质,其大小仅为固氮酶的 2%-4%,可以结合钼并以类似于固氮酶的方式与分子反应。这项工作的基础是开发新型氨基酸,这些氨基酸既可以与钼结合,又可以向金属提供电子,从而在钼金属中心参与化学反应,并结合计算蛋白质设计,将这些非天然氨基酸掺入其中明确且稳定的蛋白质结构,将支持强金属结合和反应化学。这些设计的钼蛋白将被分析和表征其结构和进行化学反应的能力,这既是为了了解天然钼蛋白如何进行重要的反应,也是其在能源使用问题关键过程中潜在应用的第一步。这项工作将解决氮循环、碳循环、能源和可持续性的核心关键过程,为具有广泛基础重要性的过程提供新的见解。从长远来看,这项工作可能会带来新颖的可持续解决方案,以减少能源使用并从非石油来源合成原料化学品。这项工作将培养本科生和研究生高度多学科的方法,包括计算蛋白质设计、肽合成和表征、功能基丰富的基质上的有机合成,培养他们适应21世纪的综合多学科科学。 固氮,即大气中的氮还原为氨,是地球上最重要的过程之一。固氮是由含有固氮酶的细菌完成的,固氮酶是一种大型酶(约 2000 个氨基酸),含有钼或钒和独特的铁硫簇。迄今为止,在天然固氮酶蛋白之外的蛋白质中还从未实现过在温和条件下完成这一古老过程。作为启发,催化固氮作用已被证明是使用具有小分子配体的合成钼络合物。为了开发能够进行与固氮酶类似的化学反应的氧化还原活性蛋白,该团队将开发一种合成钼金属蛋白,其中含有新型氧化还原活性氨基酸,其电子供体能力比天然 20 种氨基酸更强。固氮酶和合成类似物实现二氮还原(六电子、六质子过程),部分原因是钼容易获得多种氧化态(Mo(III) 至 Mo(VI)),再加上强电子供体配体的存在,包括铁硫碳化物簇。固氮酶和有机钼复合物还可以还原电子相关化合物,例如二酰亚胺(包括二嗪 HN=NH)、肼(H2N-NH2)和氰化物。这项工作旨在开发新方法,以允许使用合成蛋白质还原简单化合物,并为催化活性蛋白质的设计提供基本见解。研究人员将设计具有氧化还原活性侧链的合成蛋白质,这些侧链在天然蛋白质中不存在,并且很容易与钼、钒和钨结合,从而允许二氮和相关分子的多电子还原。 这些设计的蛋白质的金属结合特性将使用电化学、生物物理和结构方法在不同的金属氧化还原状态下进行表征。将检查设计的氧化还原活性金属蛋白对一系列π键化合物还原的反应性。该奖项由 CBET 部门的生物技术、生物化学和生物质工程项目获得,并由系统和合成生物学项目共同资助分子和细胞生物学部。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brian Kuhlman其他文献
Design of a Novel Globular Protein Fold with Atomic-Level Accuracy
具有原子级精度的新型球状蛋白质折叠的设计
- DOI:
10.1126/science.1089427 - 发表时间:
2003-11-21 - 期刊:
- 影响因子:56.9
- 作者:
Brian Kuhlman;G. Dantas;Gregory C. Ireton;Gabriele Varani;Barry L. Stoddard;David Baker - 通讯作者:
David Baker
Correction to "Catalysis by a De Novo Zinc-Mediated Protein Interface: Implications for Natural Enzyme Evolution and Rational Enzyme Engineering".
对“从头锌介导的蛋白质界面的催化:对天然酶进化和合理酶工程的影响”的更正。
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:2.9
- 作者:
Bryan S. Der;David R Edwards;Brian Kuhlman - 通讯作者:
Brian Kuhlman
Invariant point message passing for protein side chain packing
蛋白质侧链包装的不变点消息传递
- DOI:
10.1101/2023.08.03.551328 - 发表时间:
2023-12-21 - 期刊:
- 影响因子:0
- 作者:
Nicholas Z R;olph;olph;Brian Kuhlman - 通讯作者:
Brian Kuhlman
An improved protein decoy set for testing energy functions for protein structure prediction
一种改进的蛋白质诱饵集,用于测试蛋白质结构预测的能量函数
- DOI:
10.1002/prot.10454 - 发表时间:
2003-10-01 - 期刊:
- 影响因子:0
- 作者:
Jerry Tsai;Richard Bonneau;Ale;re V. Morozov;re;Brian Kuhlman;C. Rohl;David Baker - 通讯作者:
David Baker
A “solvated rotamer” approach to modeling water‐mediated hydrogen bonds at protein–protein interfaces
模拟蛋白质与蛋白质界面上水介导的氢键的“溶剂化旋转异构体”方法
- DOI:
10.1002/prot.20347 - 发表时间:
2005-03-01 - 期刊:
- 影响因子:0
- 作者:
Lin Jiang;Brian Kuhlman;Tanja Kortemme;David Baker - 通讯作者:
David Baker
Brian Kuhlman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brian Kuhlman', 18)}}的其他基金
Collaborative Research: Energy Landscapes of Designed Cold Unfolding Proteins
合作研究:设计的冷展开蛋白质的能量景观
- 批准号:
2319819 - 财政年份:2023
- 资助金额:
$ 21.41万 - 项目类别:
Standard Grant
相似国自然基金
选区激光熔化用高耐热高强镍基高温合金设计与高温强韧化机理研究
- 批准号:52371012
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
面向人机交互的磁流变柔顺执行器优化设计方法与磁滞补偿控制研究
- 批准号:52305064
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
防/除海洋生物粘附高耐久涂层的仿生设计和制造研究
- 批准号:52375296
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
碳基电磁屏蔽复合材料的双层结构设计及其吸收行为研究
- 批准号:52302364
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
非刚性折叠超材料的设计理论和力学性能研究
- 批准号:52373293
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: DESC: Type I: FLEX: Building Future-proof Learning-Enabled Cyber-Physical Systems with Cross-Layer Extensible and Adaptive Design
合作研究:DESC:类型 I:FLEX:通过跨层可扩展和自适应设计构建面向未来的、支持学习的网络物理系统
- 批准号:
2324936 - 财政年份:2024
- 资助金额:
$ 21.41万 - 项目类别:
Standard Grant
Collaborative Research: DESC: Type I: FLEX: Building Future-proof Learning-Enabled Cyber-Physical Systems with Cross-Layer Extensible and Adaptive Design
合作研究:DESC:类型 I:FLEX:通过跨层可扩展和自适应设计构建面向未来的、支持学习的网络物理系统
- 批准号:
2324937 - 财政年份:2024
- 资助金额:
$ 21.41万 - 项目类别:
Standard Grant
Collaborative Research: Concurrent Design Integration of Products and Remanufacturing Processes for Sustainability and Life Cycle Resilience
协作研究:产品和再制造流程的并行设计集成,以实现可持续性和生命周期弹性
- 批准号:
2348642 - 财政年份:2024
- 资助金额:
$ 21.41万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys
合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计
- 批准号:
2411603 - 财政年份:2024
- 资助金额:
$ 21.41万 - 项目类别:
Standard Grant
Collaborative Research: Catholyte Molecular Design For Non-aqueous Mg-organic Hybrid Redox Flow Batteries
合作研究:非水镁有机混合氧化还原液流电池的阴极电解液分子设计
- 批准号:
2419938 - 财政年份:2024
- 资助金额:
$ 21.41万 - 项目类别:
Standard Grant