Bond Tension, Surface Structure and Adsorption on Bottle-Brush Tethered Polymer Layers

瓶刷系留聚合物层上的键张力、表面结构和吸附

基本信息

  • 批准号:
    1410290
  • 负责人:
  • 金额:
    $ 27.17万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-08-15 至 2018-05-31
  • 项目状态:
    已结题

项目摘要

NONTECHNICAL SUMMARYThis award supports theoretical and computational research and education aimed at a fundamental understanding of surfaces coated with bottle-brush polymers to add new function to the surface, for example bottle-brush polymers on the cartilage surface covering bone adds lubrication. Bottle-brush polymers have found important applications in coatings and surface treatments, especially for coatings that are resistant to particular proteins or selective to specific proteins, such as for applications requiring selectivity toward certain proteins in biomedical applications and for the filtering or remediation of water by removing such impurities. Polymers are made of molecules that are strung together to form long chain molecules. Bottle-brush molecules feature side chains grafted to a linear backbone at such density that there is a high degree of repulsion between side chains. This repulsion results in tension along the side chain which is transmitted to the backbone which may be harnessed to break bonds within the molecule to create self-modifying behavior. Experimental evaluation of the properties of such structures can be prohibitive in cost and time and the interactions that make such molecules interesting often occur at the molecular level, barely in range of experimental investigation. Computer simulation enables investigations of bottle-brush molecules at different length and time scales to evaluate the properties of given classes of polymers for a specified application. The PI will use computer simulation to advance understanding of the properties of bottle-brush tethered layers and their relationship to the architecture of bottle-brush polymers.This work will fundamentally advance the theory of physical properties of bottle-brush polymers and specifically bottle-brush polymers tethered to surfaces to add new functionality. It will also provide a framework for the development of future theory regarding the physical properties of novel polymer architectures and the effects of architecture in the surface properties of polymer-based coatings, surfaces and surface treatments based on alternative polymer structures. It will aid in the design of new polymer-based materials, systems, and devices based on alternative polymer architectures. As such, this research contributes to the goals of the Materials Genome Initiative. The knowledge gained from the research contributes to the discovery and understanding of emergent effects that result as a consequence of novel architectures, such as tension accumulation and adsorption resistance in bottle-brush polymers. In addition to training and mentoring of undergraduate and graduate students using this award, the new knowledge acquired will be incorporated in graduate level courses.NONTECHNICAL SUMMARYThis award supports theoretical and computational research aimed to advance fundamental understanding of polymer-functionalized surfaces such as polymer bottle-brushes. The concept of self-modification through the use of intermolecular or intramolecular tension within bottle-brush tethered layers is a relatively new one, having been investigated experimentally only in recent years. It has been most often applied to cases in which the detached chains do not remain with the backbone, such as in coatings for drug-delivery applications. In a dense surface layer, however, the detachment and diffusion of side chains or of bottle-brush fragments within the surface layer has not, to our knowledge, been extensively studied either by simulation or experiment. Depending on the density of the brush layer, as well as any present intermolecular interactions between brush components, detachment of side chains may lead to local effects, such as reorientation into small-scale domains or may have global effects, such as plasticization of the brush layer that directly affects the adsorption characteristics and surface structure. Computer simulation enables the investigation of bottle-brush polymers and related systems, at scales ranging from the atomic to the coarse-grained or continuum, to evaluate the properties of given classes of polymers for a specified application. The PI will use coarse-grained molecular dynamics simulation to characterize bottle-brush tethered layers to study the effects of variation in side-chain grafting density, relative backbone/side-chain length, and chemical nature of brush components, for example copolymerization and noncovalent interaction. The PI will use simulation to characterize the surface adsorption characteristics for intact brush layers and layers which allow component detachment (side chains, brush segments), to investigate detachment dynamics and the effect of detached components on the structure and surface characteristics of the brush layer.This work will fundamentally advance the theory of physical properties of bottle-brush polymers and specifically bottle-brush polymers tethered to surfaces to add new functionality. It will also provide a framework for the development of future theory regarding the physical properties of novel polymer architectures and the effects of architecture in the surface properties of polymer-based coatings, surfaces and surface treatments based on alternative polymer structures. It will aid in the design of new polymer-based materials, systems, and devices based on alternative polymer architectures. As such, this research contributes to the goals of the Materials Genome Initiative. The knowledge gained from the research contributes to the discovery and understanding of emergent effects that result as a consequence of novel architectures, such as tension accumulation and adsorption resistance in bottle-brush polymers. In addition to training and mentoring of undergraduate and graduate students using this award, the new knowledge acquired will be incorporated in graduate level courses.
非技术摘要这一奖项支持理论和计算研究和教育,旨在对涂有瓶刷聚合物涂层的表面的基本了解,以增加表面的新功能,例如软骨表面上的瓶刷聚合物覆盖骨骼的瓶刷聚合物。奶瓶灌木聚合物在涂料和表面处理中发现了重要的应用,尤其是对于对特定蛋白质具有抗性或对特定蛋白质有选择性的涂层,例如,通过消除此类不存在此类不存在此类不适性,需要对某些蛋白质进行选择性的应用,以及在生物医学应用中选择性的应用,以及对水进行过滤或修复水。聚合物由分子串在一起以形成长链分子制成。瓶刷分子具有接枝到线性主链密度的侧链,以至于侧链之间有高度的排斥力。这种排斥会导致沿侧链的张力,该侧链传播到骨干,这可能会利用,以打破分子内的键以创造自我修改的行为。对此类结构的性质的实验评估在成本和时间上可能会令人难以置信,并且使这种分子有趣的相互作用通常在分子水平上发生,几乎没有实验研究范围。计算机模拟可以对不同长度和时间尺度的瓶刷分子进行研究,以评估给定类别的聚合物的特性。 PI将使用计算机模拟来提高人们对奶瓶束缚的层的特性及其与瓶刷聚合物的建筑的关系。这项工作从根本上可以提高瓶刷聚合物的物理特性理论,并具有特定的奶瓶灌木聚合物绑定的奶瓶灌木丛,以增加表面以添加新功能。它还将为发展新型聚合物架构的物理特性以及基于替代聚合物结构基于聚合物的涂料,表面和表面处理的表面特性的影响提供未来理论的发展框架。它将有助于基于替代聚合物体系结构的新型聚合物材料,系统和设备设计。因此,这项研究为材料基因组倡议的目标做出了贡献。从研究中获得的知识有助于发现和理解新兴效应,这是由于新型建筑的结果,例如瓶刷聚合物中的张力积累和吸附性。除了使用该奖项的本科和研究生的培训和指导外,获得的新知识还将纳入研究生水平课程中。本科学摘要本奖支持理论和计算研究,旨在提高对聚合物官能化表面(例如聚合物奶瓶奶油瓶)的基本了解。通过在瓶刷束缚的层中使用分子间或分子内张力,自我修饰的概念是一个相对较新的层,仅在近年来才对实验进行了研究。它通常适用于分离链不留在主链的情况下,例如用于药物交付涂料的涂料中。然而,据我们所知,在致密的表面层中,侧链或表面层内的瓶刷碎片的脱落和扩散尚未通过模拟或实验对其进行广泛研究。取决于刷子层的密度以及刷子组件之间的任何分子间相互作用,侧链的脱离可能会导致局部效应,例如重新定位到小规模域或可能具有全球效应,例如直接影响吸附特性和表面结构的刷子层的塑性。计算机仿真可以调查从原子到粗粒或连续体的尺度上的瓶刷聚合物和相关系统,以评估指定应用的给定类别聚合物的性能。 PI将使用粗粒细粒的分子动力学模拟来表征瓶刷的束缚层,以研究侧链移植密度,相对骨架/侧链长度和刷子成分的化学性质的变化的影响,例如共聚和非共价相互作用。 PI将使用仿真来表征完整的刷层和层的表面吸附特性,这些特性允许组件脱离(侧链,刷子段),以调查脱离动力学以及分离组件对刷子层的结构和表面特征的影响。这项工作将从根本上推动效果效率的瓶装瓶装和瓶装瓶装理论,这些特定于瓶装式瓶装和瓶装的理论,功能。它还将为发展新型聚合物架构的物理特性以及基于替代聚合物结构基于聚合物的涂料,表面和表面处理的表面特性的影响提供未来理论的发展框架。它将有助于基于替代聚合物体系结构的新型聚合物材料,系统和设备设计。因此,这项研究为材料基因组倡议的目标做出了贡献。从研究中获得的知识有助于发现和理解新兴效应,这是由于新型建筑的结果,例如瓶刷聚合物中的张力积累和吸附性。除了使用该奖项的本科和研究生的培训和指导外,获得的新知识还将纳入研究生级课程中。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mesfin Tsige其他文献

Mesfin Tsige的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mesfin Tsige', 18)}}的其他基金

Solution and Interfacial Properties of Catenated Polymers
链状聚合物的溶液和界面性质
  • 批准号:
    2114640
  • 财政年份:
    2022
  • 资助金额:
    $ 27.17万
  • 项目类别:
    Standard Grant
REU Site: Polymer Science and Engineering at The University of Akron
REU 站点:阿克伦大学高分子科学与工程
  • 批准号:
    2051052
  • 财政年份:
    2021
  • 资助金额:
    $ 27.17万
  • 项目类别:
    Standard Grant
Modeling Macroions – Filling the Gap Between Ions and Colloids
宏离子建模 – 填补离子和胶体之间的空白
  • 批准号:
    2106196
  • 财政年份:
    2021
  • 资助金额:
    $ 27.17万
  • 项目类别:
    Standard Grant
I-Corps: Virtual Lab for Coatings Design and Development
I-Corps:涂料设计和开发虚拟实验室
  • 批准号:
    1952030
  • 财政年份:
    2020
  • 资助金额:
    $ 27.17万
  • 项目类别:
    Standard Grant
Seeding US Africa Cooperation in STEM: A Summer Workshop at Gondar University in Ethiopia
推动美非 STEM 合作:埃塞俄比亚贡德尔大学夏季研讨会
  • 批准号:
    1935833
  • 财政年份:
    2019
  • 资助金额:
    $ 27.17万
  • 项目类别:
    Standard Grant
EAGER: Multiscale Modeling of Mechanically-Interlocked Macromolecules
EAGER:机械连锁大分子的多尺度建模
  • 批准号:
    1912329
  • 财政年份:
    2019
  • 资助金额:
    $ 27.17万
  • 项目类别:
    Standard Grant
REU Site: Polymer Science and Engineering at The University of Akron
REU 站点:阿克伦大学高分子科学与工程
  • 批准号:
    1659531
  • 财政年份:
    2017
  • 资助金额:
    $ 27.17万
  • 项目类别:
    Standard Grant
Elucidating the Unique Self-Assembly Behavior of Macroions in Solution From Molecular Level Modeling
从分子水平建模阐明溶液中宏离子的独特自组装行为
  • 批准号:
    1665284
  • 财政年份:
    2017
  • 资助金额:
    $ 27.17万
  • 项目类别:
    Standard Grant
Collaborative Research: Theoretical and Experimental Investigations of Inter-Molecular forces Between Environmental Pollutants and Carbon nanotubes
合作研究:环境污染物与碳纳米管分子间作用力的理论与实验研究
  • 批准号:
    1506275
  • 财政年份:
    2015
  • 资助金额:
    $ 27.17万
  • 项目类别:
    Standard Grant
REU SITE: POLYMER SCIENCE AND ENGINEERING AT THE UNIVERSITY OF AKRON
REU 站点:阿克伦大学高分子科学与工程
  • 批准号:
    1359321
  • 财政年份:
    2014
  • 资助金额:
    $ 27.17万
  • 项目类别:
    Continuing Grant

相似国自然基金

单细胞中多种肾素-血管紧张素系统相关酶活性同时分析的纳米孔道新方法
  • 批准号:
    22304077
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
丘脑腹后外侧核中星形胶质细胞来源紧张性抑制电流在神经病理性疼痛中的作用及机制研究
  • 批准号:
    82360235
  • 批准年份:
    2023
  • 资助金额:
    32.2 万元
  • 项目类别:
    地区科学基金项目
肾副交感神经通过肾素-血管紧张素系统对血压的调控作用及机制
  • 批准号:
    82300503
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
血管紧张素肽原在节律紊乱引起的PCOS排卵障碍中的作用及机制
  • 批准号:
    82301839
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
PLIN5介导脂滴-线粒体接触在血管紧张素Ⅱ诱导足细胞脂毒性损伤中的作用及机制
  • 批准号:
    82300767
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

POLYMER-COATED RED BLOOD CELL FOR SICKLE CELL DISEASE
用于镰状细胞病的聚合物涂层红细胞
  • 批准号:
    6190849
  • 财政年份:
    2000
  • 资助金额:
    $ 27.17万
  • 项目类别:
POLYMER-COATED RED BLOOD CELL FOR SICKLE CELL DISEASE
用于镰状细胞病的聚合物涂层红细胞
  • 批准号:
    6527635
  • 财政年份:
    2000
  • 资助金额:
    $ 27.17万
  • 项目类别:
POLYMER-COATED RED BLOOD CELL FOR SICKLE CELL DISEASE
用于镰状细胞病的聚合物涂层红细胞
  • 批准号:
    6390878
  • 财政年份:
    2000
  • 资助金额:
    $ 27.17万
  • 项目类别:
POLYMER-COATED RED BLOOD CELL FOR SICKLE CELL DISEASE
用于镰状细胞病的聚合物涂层红细胞
  • 批准号:
    6650218
  • 财政年份:
    2000
  • 资助金额:
    $ 27.17万
  • 项目类别:
Molecular Signals for Trafficking Surfactant Protein B
贩运表面活性剂蛋白 B 的分子信号
  • 批准号:
    7618492
  • 财政年份:
    1998
  • 资助金额:
    $ 27.17万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了