Collaborative Research: Design and modeling of novel superconducting circuits with coherent phase slips

合作研究:具有相干相滑的新型超导电路的设计和建模

基本信息

项目摘要

Superconductivity is a quantum phenomenon that manifests itself as an abrupt disappearance of resistivity in certain materials as temperature is lowered below their critical temperature. Recent advances in the nanometer size fabrication, materials science and high precision measurements made it possible to investigate a variety of novel superconducting nanosystems, which were almost unthinkable only a few years ago. Specifically the studies of quantum transport phenomena in nanoscale superconducting wires and circuits made of them are rapidly emerging as one of the central themes of modern physics and engineering. As wire is made narrower, a variety of intriguing quantum effects becomes apparent. Strong spatial confinement leads to intricate electron correlations that influence superconducting properties of the structure. Ultimately superconductivity could be gradually extinguished and some wires may display pronounced insulating behavior, leading to the so-called superconductor-insulator transition. Superconductors are extremely attractive systems from the point of view of future applications as they could become elementary building blocks for memory bits of quantum computers and other devices operating on coherent quantum tunneling events. The main aim of this joint project is to harness the power of quantum coherence, address the urgent problems of nanoscale-circuit-superconductivity at the frontier of current research, and discover new physics in this exciting field. Our approach will be to combine the expertise of a condensed matter theorist and an experimentalist both having extended experience in related fields. The collaborative structure of the research will provide a rich environment for training students in a broad spectrum of experimental nanoscience and theoretical condensed matter physics. Educational aspects will be further integrated through the development of courses directly related to the proposed research and through research-related seminars, science olympiads, and meetings that target high-school teachers.The goal of the project is to study emergent quantum transport phenomena in the modern nanoscale superconducting circuits driven far from equilibrium and populated with coherent phase slips to reveal the ultimate fate of superconducting correlations in the new domain of external conditions and environments. A substantial part of the proposed research is devoted to stochastic kinetics of the coherent phase slips in superconducting nanowires, nanowire-bridged resonators, and interferometers. The focus in on the mutual role of microwave bias and a magnetic field on the reentrant superconductivity, statistics of the supercurrent switching, bi-stability and current-voltage characteristics, and a study of even-odd parity effects for the phase slip tunneling events. Suggested studies of the excess shot noise, carried across the superconducting transition, will provide additional insights into the microscopic mechanisms of the relaxation and fluctuations. The project also dwells into the new area of exploring proximity-induced superconductivity between superconducting and semiconducting heterostructures that host topological order. This research direction aims to answer the key questions concerning robustness and stability of the topological protection to effects of interactions, disorder and other relevant perturbations. The long-term goal of this project is to develop novel superconducting qubits with coherent phase slips for quantum circuit electrodynamics applications. The proposed architecture designs are based on the phase-slip-junction, the phase-slip-oscillator and an alternative device based on the supercurrent carrying inductor with tunable nonlinearity. The success and completion of this proposal will be of value for the technological advances in the information processing and the photon detection. The technical and theoretical methods that will be developed as a part of this proposal are relevant to a much wider class of problems in the quantum physics of many-body systems. The results of the proposed work will be widely disseminated in publications, seminars, colloquia and conference presentations. Students working under this project will receive extensive training by studying modern aspects of the condensed matter physics, developing new conceptual approaches to nonequilibrium superconducting systems and pursuing original research. As a part of the diversity and educational initiatives PIs will expand research opportunities for the undergraduate students of underrepresented groups and contribute to the science olympiad interscholastic competition program.
超导性是一种量子现象,它表现为某些材料中电阻率的突然消失,因为温度降低了其临界温度。纳米尺寸的制造,材料科学和高精度测量结果的最新进展使得研究了各种新型的超导纳米系统,这几乎是几年前几乎是不可想象的。具体而言,纳米级超导电线及其电路中量子传输现象的研究迅速成为现代物理和工程的中心主题之一。随着电线的变窄,各种有趣的量子效应变得显而易见。强烈的空间限制导致复杂的电子相关性,影响结构的超导特性。最终可以逐渐熄灭超导性,有些电线可能显示出明显的绝缘行为,从而导致所谓的超导体 - 绝缘体转变。 从未来应用的角度来看,超导体是极具吸引力的系统,因为它们可能会成为量子计算机和其他设备在相干量子隧道事件中运行的设备的基本组成部分。该联合项目的主要目的是利用量子相干性的力量,解决当前研究边界的纳米级 - 电流 - 驱散性的紧急问题,并在这个令人兴奋的领域中发现新的物理学。我们的方法是结合凝结物质理论家的专业知识和一个在相关领域具有扩展经验的实验主义者。该研究的协作结构将为培训各种实验性纳米科学和理论凝结物理物理学的学生提供丰富的环境。通过与拟议的研究直接相关的课程以及与研究相关的研讨会,科学奥林匹克运动会以及针对高中老师的会议,将进一步整合教育方面。该项目的目的是研究新兴的量子运输现象现代的纳米级超导电路驱动到远离平衡,并带有连贯的相位滑动,以揭示外部条件和环境新领域中超导相关性的最终命运。拟议的研究的很大一部分致力于在超导纳米线,纳米桥桥接的谐振器和干涉仪中相干相滑的随机动力学。关注微波偏置和磁场对返回超导性的相互作用,超电流开关的统计数据,双稳定性和电流 - 电压特性以及对相位滑道隧道事件中偶数偶然效应的研究。建议对超导过渡的多余射击噪声进行的研究将提供对弛豫和波动的显微镜机制的更多见解。该项目还居住在探索接近性诱导的超导和半导体异质结构之间的新领域。该研究方向旨在回答有关拓扑保护对相互作用,混乱和其他相关扰动影响的鲁棒性和稳定性的关键问题。该项目的长期目标是开发具有连贯相位滑动的新型超导Qubits用于量子电路电动力学应用。所提出的架构设计基于相位滑动结构,相滑振荡器和基于具有可调非线性的超电流电感器的替代设备。该提案的成功和完成对于信息处理和光子检测的技术进步将是有价值的。作为本提案的一部分将开发的技术和理论方法与多体系统的量子物理学中的一系列问题有关。拟议作品的结果将在出版物,研讨会,座谈会和会议演讲中广泛传播。在这个项目下工作的学生将通过研究凝结物理物理学的现代方面,开发新的概念方法来获得非平衡超导系统的新概念方法并进行原始研究,从而获得广泛的培训。作为多样性和教育举措的一部分,PI将扩大代表性群体不足的本科生的研究机会,并为科学奥林匹亚杂交竞争计划做出贡献。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Decoherence and radiation-free relaxation in Meissner transmon qubit coupled to Abrikosov vortices
  • DOI:
    10.1103/physrevb.94.165128
  • 发表时间:
    2016-10-14
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Ku, Jaseung;Yoscovits, Zack;Bezryadin, Alexey
  • 通讯作者:
    Bezryadin, Alexey
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexey Bezryadin其他文献

Reversed Photoeffect in Transparent Graphene Nanocapacitors
透明石墨烯纳米电容器中的反转光效应
  • DOI:
    10.1021/acsaelm.9b00659
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    A. Belkin;E. Ilin;I. Burkova;Alexey Bezryadin
  • 通讯作者:
    Alexey Bezryadin

Alexey Bezryadin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexey Bezryadin', 18)}}的其他基金

Zero energy modes in vortex cores: Spectroscopy and Majorana carousel braiding
涡核中的零能量模式:光谱学和马约拉纳旋转木马编织
  • 批准号:
    2104757
  • 财政年份:
    2021
  • 资助金额:
    $ 31.94万
  • 项目类别:
    Continuing Grant
EAGER: BRAIDING: Multi-terminal Josephson circuits supporting nontrivial Chern topologies for anyonic qubits
EAGER:编织:多终端约瑟夫森电路支持任意子量子位的非平凡陈氏拓扑
  • 批准号:
    1836710
  • 财政年份:
    2018
  • 资助金额:
    $ 31.94万
  • 项目类别:
    Standard Grant
Collaborative Research: Investigation of Superconducting Nanowires and Graphene Junctions Using a Coplanar Fabry-Perot Microwave Resonator as a Qubit Device
合作研究:使用共面法布里-珀罗微波谐振器作为量子位器件研究超导纳米线和石墨烯结
  • 批准号:
    1005645
  • 财政年份:
    2010
  • 资助金额:
    $ 31.94万
  • 项目类别:
    Continuing Grant
CAREER: Quantum Properties of Ultrasmall Homogeneous Superconducting Nanostructures
职业:超小型均质超导纳米结构的量子特性
  • 批准号:
    0134770
  • 财政年份:
    2002
  • 资助金额:
    $ 31.94万
  • 项目类别:
    Continuing Grant

相似国自然基金

载人飞行器-地形共融多平台协作起降机构设计及容错控制研究
  • 批准号:
    52305039
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向人机协作的人机交互界面设计机制研究
  • 批准号:
    72271053
  • 批准年份:
    2022
  • 资助金额:
    45 万元
  • 项目类别:
    面上项目
基于不完善信息的协作型多智能体系统设计与优化技术研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于固-液相变热管理技术的协作机器人关节力矩电机设计方法研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
网联多车协作定位和编队控制联合设计优化技术研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
  • 批准号:
    2334970
  • 财政年份:
    2024
  • 资助金额:
    $ 31.94万
  • 项目类别:
    Standard Grant
Collaborative Research: Concurrent Design Integration of Products and Remanufacturing Processes for Sustainability and Life Cycle Resilience
协作研究:产品和再制造流程的并行设计集成,以实现可持续性和生命周期弹性
  • 批准号:
    2348641
  • 财政年份:
    2024
  • 资助金额:
    $ 31.94万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
  • 批准号:
    2413579
  • 财政年份:
    2024
  • 资助金额:
    $ 31.94万
  • 项目类别:
    Standard Grant
Collaborative Research: Design and synthesis of hybrid anode materials made of chemically bonded carbon nanotube to copper: a concerted experiment/theory approach
合作研究:设计和合成由化学键合碳纳米管和铜制成的混合阳极材料:协调一致的实验/理论方法
  • 批准号:
    2334039
  • 财政年份:
    2024
  • 资助金额:
    $ 31.94万
  • 项目类别:
    Continuing Grant
Collaborative Research: Design: Strengthening Inclusion by Change in Building Equity, Diversity and Understanding (SICBEDU) in Integrative Biology
合作研究:设计:通过改变综合生物学中的公平、多样性和理解(SICBEDU)来加强包容性
  • 批准号:
    2335235
  • 财政年份:
    2024
  • 资助金额:
    $ 31.94万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了