Optical Cavity Enhanced Nanoscale Gas Chromatography

光腔增强纳米气相色谱

基本信息

  • 批准号:
    1407947
  • 负责人:
  • 金额:
    $ 40.04万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-09-01 至 2018-08-31
  • 项目状态:
    已结题

项目摘要

Proposal Title: Optical Cavity Enhanced Nanoscale Gas ChromatographyProposal Goal: The research aims to pioneer a study on the development of an ultra-compact nanoscale gas chromatography platform with integrated on-column photonic crystal cavity-enhanced Fano resonance nanosensor arrays to achieve ultrafast and highly sensitive gas analysis.Nontechnical Abstract:Rapid and in-situ chemical vapor analysis provides vital information in many applications such as environmental monitoring, healthcare, industrial and workplace safety, and defense and national security. Unfortunately, most gas sensors lack the detection specificity, makes it challenging to analyze real-world samples that usually contain tens to hundreds of volatile organic compounds. Although recent advancement in micro-gas chromatography (GC) demonstrates great potential in the development of powerful portable gas analysis devices, it still remains a grand challenge to achieve ultrafast separation and detection while maintaining adequate separation resolution and small footprint for effective gas analysis. This research aims to develop a nanoscale gas chromatography device that provides unprecedented gas analysis speed, separation capability, sensitivity, ultra-compact size, and system scalability. The success of this research will lead to the development of wearable and personalized gas sensors that can be easily accepted and accessible by the general public for various applications. Scaling from micro-GC to nano-GC presents a range of scientific and engineering challenges, including the column design, polymer coating, mismatch between the nanoscale column and the micro-scale detection/sensing scheme, high spectrally and spatially resolved optical sensors, and system integration architectures. In addition to technical advances, fundamental study of gas separation mechanisms and processes in a nanofluidic channel provides unique insight into the molecular interaction and gas dynamics within nano-sized confinement, which will not only be important for discovery of new sensing and separation mechanisms, but can also be extended to many seemingly unrelated areas (such as gas exchange processes in the lung). The knowledge generated through the proposed project will be instrumental to the development of new techniques and tools to push a plethora of engineering fields to a new frontier.The proposed project offers extensive interdisciplinary education and training opportunities for undergraduate and graduate students. The research outcomes will also be integrated into the outreach activities with local K-12 schools and communities to attract students to STEM careers. Technical Abstract:The objective of this project is to pioneer a study on the development of a nano-GC platform with integrated on-column photonic crystal cavity-enhanced Fano resonance nanosensor arrays to achieve portable, quantitative, ultra-fast, and high separation resolution volatile organic compounds analysis in complex gas mixtures. In the proposed work, nanofluidic channels are directly fabricated and integrated with the coupled photonic crystal slab Fano resonance filters, offering a unique capability in studying the gas separation in the nanoscale confined environment. The specific research tasks include: (1) Fundamental study of gas separation mechanisms and processes in a nanofluidic channel; (2) Development of the photonic crystal cavity enhanced sensor array; (3) On-chip integration of nano-GC channels with photonic crystal sensor arrays; and (4) Prototyping of a nano-GC system for ultra-fast analysis of a panel of volatile organic compounds in complex gas mixtures.
提案标题:光腔增强型纳米级气相色谱提案目标:该研究旨在开创性地研究开发超紧凑型纳米级气相色谱平台,该平台具有集成的柱上光子晶体腔增强型Fano共振纳米传感器阵列,以实现超快和高灵敏度非技术摘要:快速原位化学蒸气分析为环境监测、医疗保健、工业和工作场所安全以及国防和国家安全等许多应用提供了重要信息。不幸的是,大多数气体传感器缺乏检测特异性,这使得分析通常含有数十到数百种挥发性有机化合物的真实样品变得具有挑战性。尽管微型气相色谱 (GC) 的最新进展显示出开发强大的便携式气体分析设备的巨大潜力,但实现超快速分离和检测,同时保持足够的分离分辨率和小占地面积以进行有效的气体分析仍然是一个巨大的挑战。本研究旨在开发一种纳米级气相色谱装置,提供前所未有的气体分析速度、分离能力、灵敏度、超紧凑尺寸和系统可扩展性。这项研究的成功将促进可穿戴和个性化气体传感器的开发,这些传感器可以很容易地被公众接受和使用,用于各种应用。从微型气相色谱到纳米气相色谱的扩展带来了一系列科学和工程挑战,包括色谱柱设计、聚合物涂层、纳米级色谱柱和微米级检测/传感方案之间的不匹配、高光谱和空间分辨率的光学传感器,以及系统集成架构。除了技术进步之外,对纳米流体通道中气体分离机制和过程的基础研究为纳米尺寸限制内的分子相互作用和气体动力学提供了独特的见解,这不仅对于发现新的传感和分离机制很重要,而且还可以扩展到许多看似无关的领域(例如肺部的气体交换过程)。通过拟议项目产生的知识将有助于开发新技术和工具,将众多工程领域推向新的前沿。拟议项目为本科生和研究生提供广泛的跨学科教育和培训机会。研究成果还将融入当地 K-12 学校和社区的外展活动中,以吸引学生从事 STEM 职业。技术摘要:该项目的目标是开创性地研究开发具有集成柱上光子晶体腔增强型法诺共振纳米传感器阵列的纳米气相色谱平台,以实现便携式、定量、超快速和高分离分辨率复杂气体混合物中的挥发性有机化合物分析。在拟议的工作中,纳米流体通道直接制造并与耦合光子晶体板 Fano 共振滤波器集成,为研究纳米级受限环境中的气体分离提供了独特的能力。具体研究任务包括:(1)纳流通道内气体分离机理和过程的基础研究; (2)光子晶体腔增强传感器阵列的研制; (3)nano-GC通道与光子晶体传感器阵列的片上集成; (4) 纳米气相色谱系统原型设计,用于对复杂气体混合物中的一组挥发性有机化合物进行超快速分析。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yuze (Alice) Sun其他文献

Yuze (Alice) Sun的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yuze (Alice) Sun', 18)}}的其他基金

PFI-RP: Portable integrated photonic micro-gas chromatography system for rapid gas analysis
PFI-RP:用于快速气体分析的便携式集成光子微气相色谱系统
  • 批准号:
    2213975
  • 财政年份:
    2022
  • 资助金额:
    $ 40.04万
  • 项目类别:
    Standard Grant
CAREER: Optofluidic Lasers at the Liquid-Liquid Interface: A Versatile Biosensing Platform
职业:液-液界面的光流控激光器:多功能生物传感平台
  • 批准号:
    1554013
  • 财政年份:
    2016
  • 资助金额:
    $ 40.04万
  • 项目类别:
    Standard Grant

相似国自然基金

基于波导腔体结构的宽带紧耦合缝隙阵列研究
  • 批准号:
    62301158
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于串联腔体共振的供水管道泄漏声波产生机理与识别方法研究
  • 批准号:
    52300119
  • 批准年份:
    2023
  • 资助金额:
    20 万元
  • 项目类别:
    青年科学基金项目
全金属腔体缝隙阵列天线RCS缩减关键技术研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
5G通讯基站复杂散热腔体压铸件用盐芯的分层挤出成型及强韧化机制
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
大跨径钢砼桥梁多模态裂缝-腔体时空演化机理及损伤识别预测
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    31 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Preclinical development of a novel antibody conjugate for intraoperative detection of pancreatic cancer
用于术中检测胰腺癌的新型抗体偶联物的临床前开发
  • 批准号:
    10584614
  • 财政年份:
    2022
  • 资助金额:
    $ 40.04万
  • 项目类别:
Preclinical development of a novel antibody conjugate for intraoperative detection of pancreatic cancer
用于术中检测胰腺癌的新型抗体偶联物的临床前开发
  • 批准号:
    10365729
  • 财政年份:
    2022
  • 资助金额:
    $ 40.04万
  • 项目类别:
Model Theory of Enhanced Light-Matter Interaction in a PT-Symmetric Hybrid Optical Cavity
PT对称混合光腔中增强光-物质相互作用的模型理论
  • 批准号:
    1954393
  • 财政年份:
    2020
  • 资助金额:
    $ 40.04万
  • 项目类别:
    Standard Grant
Optical and Quantum Coherence Study of 2D-Material Based Cavity-Enhanced Emitters and Nanolasers
基于二维材料的腔增强发射器和纳米激光器的光学和量子相干性研究
  • 批准号:
    410408989
  • 财政年份:
    2019
  • 资助金额:
    $ 40.04万
  • 项目类别:
    Research Grants
Octave spanning gain by cavity enhanced optical parametric amplification
通过腔增强光学参量放大获得倍频程增益
  • 批准号:
    1002286
  • 财政年份:
    2010
  • 资助金额:
    $ 40.04万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了