Knots and contact topology through holomorphic curves

通过全纯曲线的结和接触拓扑

基本信息

  • 批准号:
    1406371
  • 负责人:
  • 金额:
    $ 43.67万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-09-01 至 2018-08-31
  • 项目状态:
    已结题

项目摘要

The subjects of mathematics and physics have always been closely intertwined, with each one motivating and informing progress in the other. This project focuses on one current area of interplay, between topology (the study of shapes) on the mathematical side and string theory on the physics side. The jumping-off point for the project is an intriguing and unexpected connection, recently discovered by the Principal Investigator and collaborators on both sides, between two separate algebraic structures associated to knots in space: one in topology developed by the Principal Investigator, and one in string theory that has been the focus of much research in the past few years. In the course of this project, the Principal Investigator will establish this connection, which is currently only supported circumstantially; it is hoped that this work will create and strengthen new lines of communication between mathematics and physics, introducing techniques from each discipline into the other. The Principal Investigator will also use this project to train future mathematicians at all levels, from contributing to the annual USA Mathematical Olympiad for high school students, to supervising the research of undergraduates, graduate students, and postdoctoral fellows, to organizing conferences and seminars for established researchers.In the past decade, the Principal Investigator has introduced and studied a package of knot invariants called knot contact homology, which arises by counting holomorphic curves in certain symplectic manifolds, using a method in symplectic geometry pioneered by Gromov and Floer and more recently culminating in the Symplectic Field Theory of Eliashberg, Givental, and Hofer. Previous work has shown that knot contact homology is a robust invariant that is effective at distinguishing knots and contains classical topological information about the knot. In 2012, it was discovered by Aganagic, Ekholm, Vafa, and the Principal Investigator that knot contact homology has an unexpected and potentially powerful relation to string theory and mirror symmetry: the augmentation polynomial, a knot invariant derived from knot contact homology, is conjectured to be equal to Aganagic and Vafa's Q-deformed A-polynomial, which arises in the context of topological strings. The Principal Investigator will approach this conjecture using Lagrangian fillings and Gromov-Witten potentials. This could have significant ramifications in different directions: in knot theory, it would establish a variant of the AJ conjecture; in mirror symmetry, it would produce a new approach via Symplectic Field Theory to constructing mirror Calabi-Yau 3-folds; and in topological string theory, it would provide a mathematical foundation for recent results. In related work, the Principal Investigator will develop and strengthen the algebraic framework underneath certain aspects of Symplectic Field Theory, including knot contact homology and symplectic homology. New algebraic tools in this context, such as representation theory for differential graded algebras, would enable one to more effectively attack problems in symplectic geometry, in particular by analyzing Weinstein structures on symplectic manifolds and Legendrian and transverse knots in contact manifolds.
数学和物理学科始终紧密地交织在一起,每一学科都激励和促进另一学科的进步。该项目重点关注当前相互作用的一个领域,即数学方面的拓扑(形状研究)和物理方面的弦理论之间的相互作用。该项目的起点是首席研究员和双方合作者最近发现的一种有趣且意想不到的联系,它位于与空间结相关的两个独立的代数结构之间:一个是首席研究员开发的拓扑结构,另一个是由首席研究员开发的拓扑结构。弦理论是近几年研究的热点。在该项目的过程中,首席研究员将建立这种连接,目前仅在情况下提供支持;希望这项工作能够创建并加强数学和物理学之间的新交流途径,将每个学科的技术引入到另一个学科中。首席研究员还将利用该项目来培训各个级别的未来数学家,从为每年一度的美国高中生数学奥林匹克竞赛做出贡献,到监督本科生、研究生和博士后研究员的研究,再到为已建立的数学家组织会议和研讨会。在过去的十年中,首席研究员引入并研究了一系列称为结接触同源性的结不变量,它是通过计算某些辛中的全纯曲线而产生的流形,使用由 Gromov 和 Floer 首创的辛几何方法,最近在 Eliashberg、Givental 和 Hofer 的辛场论中达到顶峰。先前的工作表明,结接触同源性是一个稳健的不变量,可以有效区分结,并且包含有关结的经典拓扑信息。 2012 年,Aganagic、Ekholm、Vafa 和首席研究员发现结接触同源性与弦理论和镜像对称性具有意想不到的潜在强大关系:推测增广多项式,即从结接触同源性导出的结不变量等于 Aganagic 和 Vafa 的 Q 变形 A 多项式,它出现在拓扑弦的上下文中。首席研究员将使用拉格朗日填充和格罗莫夫-维滕势来解决这个猜想。这可能会在不同的方向上产生重大影响:在纽结理论中,它将建立 AJ 猜想的一个变体;在镜像对称方面,它将产生一种通过辛场论构建镜像 Calabi-Yau 3 倍的新方法;在拓扑弦理论中,它将为最近的结果提供数学基础。在相关工作中,首席研究员将开发和加强辛场论某些方面的代数框架,包括结接触同调和辛同调。在这种情况下,新的代数工具,例如微分分级代数的表示论,将使人们能够更有效地解决辛几何中的问题,特别是通过分析辛流形上的韦恩斯坦结构以及接触流形中的勒让结和横结。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Representations, sheaves and Legendrian (2,m) torus links
表示、滑轮和 Legendrian (2,m) 环面链接
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lenhard Ng其他文献

Lenhard Ng的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lenhard Ng', 18)}}的其他基金

Holomorphic Invariants of Knots and Contact Manifolds
结和接触流形的全纯不变量
  • 批准号:
    2003404
  • 财政年份:
    2020
  • 资助金额:
    $ 43.67万
  • 项目类别:
    Continuing Grant
Holomorphic Invariants in Symplectic Topology
辛拓扑中的全纯不变量
  • 批准号:
    1707652
  • 财政年份:
    2017
  • 资助金额:
    $ 43.67万
  • 项目类别:
    Continuing Grant
CAREER: Symplectic Field Theory and Low-Dimensional Topology
职业:辛场论和低维拓扑
  • 批准号:
    0846346
  • 财政年份:
    2009
  • 资助金额:
    $ 43.67万
  • 项目类别:
    Continuing Grant
Holomorphic Curves and Low-Dimensional Topology
全纯曲线和低维拓扑
  • 批准号:
    0706777
  • 财政年份:
    2007
  • 资助金额:
    $ 43.67万
  • 项目类别:
    Standard Grant

相似国自然基金

自然接触对青少年网络问题行为的作用机制及其干预
  • 批准号:
    72374025
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
蜜蜂足垫粘附接触界面的力学调控机理及其仿生研究
  • 批准号:
    52375282
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于纳微纤维化结构的柔性湿敏复合材料设计及非接触人机交互研究
  • 批准号:
    52303112
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
仿生形状记忆型自驱动接触熔化动态传热行为与强化机理研究
  • 批准号:
    52306077
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
末端执行器抓取过程半物理仿真的刚-柔-软接触动力学机理和位置/力补偿研究
  • 批准号:
    62303370
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Study on Contact Homology by String Topology
弦拓扑接触同调研究
  • 批准号:
    23KJ1238
  • 财政年份:
    2023
  • 资助金额:
    $ 43.67万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Metrics and intersections in symplectic and contact topology
辛和接触拓扑中的度量和交集
  • 批准号:
    RGPIN-2017-05596
  • 财政年份:
    2022
  • 资助金额:
    $ 43.67万
  • 项目类别:
    Discovery Grants Program - Individual
The Topology of Contact Type Hypersurfaces and Related Topics
接触型超曲面拓扑及相关主题
  • 批准号:
    2105525
  • 财政年份:
    2021
  • 资助金额:
    $ 43.67万
  • 项目类别:
    Standard Grant
Metrics and intersections in symplectic and contact topology
辛和接触拓扑中的度量和交集
  • 批准号:
    RGPIN-2017-05596
  • 财政年份:
    2021
  • 资助金额:
    $ 43.67万
  • 项目类别:
    Discovery Grants Program - Individual
Higher-dimensional contact topology
高维接触拓扑
  • 批准号:
    2003483
  • 财政年份:
    2020
  • 资助金额:
    $ 43.67万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了