CSR: Medium: Collaborative Research: Programming Abstractions and Systems Support for GPU-Based Acceleration of Irregular Applications
CSR:媒介:协作研究:基于 GPU 的不规则应用加速的编程抽象和系统支持
基本信息
- 批准号:1406355
- 负责人:
- 金额:$ 73.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-10-01 至 2020-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
There is growing interest in using Graphics Processing Units (GPUs) to increase the performance and the energy efficiency of applications outside the graphics domain. GPUs are particularly suited to run regular programs that perform operations similar to pixel processing, and they can offer a large advantage over multicore CPUs in terms of performance, price, and energy efficiency in this domain. Not surprisingly, GPUs are increasingly appearing in devices ranging from handhelds to supercomputers.Although regular algorithms are very important, new problem domains such as computational biology, data mining, and social networks necessitate very different algorithmic foundations: they require building, computing with, and updating large graphs. Unfortunately, relatively little is understood about how to implement irregular applications efficiently on current GPU architectures. Features such as lockstep operation and the need to minimize thread divergence and maximize memory coalescing pose particular challenges to efficient implementation of irregular algorithms. Nevertheless, some recent successes in hand-porting irregular codes suggest that the difficulties lie not in the GPU hardware but in the immaturity of the state of the art of writing and tuning GPU code due to the lack of general, well-understood optimization techniques.This work will develop programming notations, compiler optimizations, and runtime system support that will enable programmers to express their algorithms at a high level of abstraction but still yield good performance. Projected tasks include producing highly optimized handwritten GPU implementations of important irregular algorithms and adding them to the LonestarGPU benchmark suite, identifying common patterns of optimizations and runtime systems support needed for efficient GPU implementations, developing a programming notation to permit the software developer to specify irregular algorithms at a high level of abstraction, implementing a synthesis system that automatically generates high-performance GPU code from these high-level specifications, and developing course material for teaching GPU programming of irregular codes.The higher performance and better energy efficiency of GPUs relative to multicore CPUs has sincere societal benifits. This work builds on the realization of these benefits by facilitating simpler and more widespread utilization of GPUs and incorporating more effective practices into future compilers and GPU hardware.
人们越来越有兴趣使用图形处理单元 (GPU) 来提高图形领域之外的应用程序的性能和能效。 GPU 特别适合运行执行类似于像素处理操作的常规程序,并且在该领域的性能、价格和能源效率方面,它们比多核 CPU 具有更大的优势。毫不奇怪,GPU 越来越多地出现在从手持设备到超级计算机等各种设备中。尽管常规算法非常重要,但计算生物学、数据挖掘和社交网络等新问题领域需要非常不同的算法基础:它们需要构建、计算和更新大图。不幸的是,人们对如何在当前 GPU 架构上有效实现不规则应用程序的了解相对较少。 诸如锁步操作以及最小化线程分歧和最大化内存合并的需要等特征对高效实现不规则算法提出了特殊的挑战。然而,最近在手工移植不规则代码方面取得的一些成功表明,困难不在于 GPU 硬件,而在于由于缺乏通用的、易于理解的优化技术,编写和调整 GPU 代码的技术水平还不成熟。这项工作将开发编程符号、编译器优化和运行时系统支持,使程序员能够在高抽象级别表达他们的算法,但仍能产生良好的性能。预计任务包括生成重要不规则算法的高度优化的手写 GPU 实现并将其添加到 LonestarGPU 基准套件中、识别高效 GPU 实现所需的常见优化模式和运行时系统支持、开发编程符号以允许软件开发人员指定不规则算法在高抽象层次上,实现一个综合系统,根据这些高层次规范自动生成高性能 GPU 代码,并开发用于教授不规则代码的 GPU 编程的课程材料。相对于多核,GPU 具有更高的性能和更好的能效CPU有诚意社会效益。这项工作建立在实现这些优势的基础上,通过促进 GPU 的更简单和更广泛的使用以及将更有效的实践纳入未来的编译器和 GPU 硬件中。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Keshav Pingali其他文献
Keshav Pingali的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Keshav Pingali', 18)}}的其他基金
CSR: Medium: Optimal Control of Approximate Computing Systems
CSR:中:近似计算系统的最优控制
- 批准号:
1705092 - 财政年份:2017
- 资助金额:
$ 73.97万 - 项目类别:
Standard Grant
SPX: Collaborative Research: Mongo Graph Machine (MGM): A Flash-Based Appliance for Large Graph Analytics
SPX:协作研究:Mongo Graph Machine (MGM):基于闪存的大型图形分析设备
- 批准号:
1725322 - 财政年份:2017
- 资助金额:
$ 73.97万 - 项目类别:
Standard Grant
SHF: Small: Efficient Parallel Execution of Irregular, Ordered Algorithms
SHF:小型:不规则有序算法的高效并行执行
- 批准号:
1618425 - 财政年份:2016
- 资助金额:
$ 73.97万 - 项目类别:
Standard Grant
XPS: FP: Collaborative Research: Parallel Irregular Programs: From High-Level Specifications to Run-time Optimizations
XPS:FP:协作研究:并行不规则程序:从高级规范到运行时优化
- 批准号:
1337281 - 财政年份:2013
- 资助金额:
$ 73.97万 - 项目类别:
Standard Grant
Collaborative Research: Conceptualizing an Institute for Using Inter-Domain Abstractions to Support Inter-Disciplinary Applications
协作研究:概念化一个使用跨域抽象来支持跨学科应用的研究所
- 批准号:
1216701 - 财政年份:2012
- 资助金额:
$ 73.97万 - 项目类别:
Standard Grant
SHF: Small: Autograph: A System for Synthesizing Concurrent Data Structure Implementations
SHF:小型:Autograph:综合并发数据结构实现的系统
- 批准号:
1218568 - 财政年份:2012
- 资助金额:
$ 73.97万 - 项目类别:
Standard Grant
CSR: Large: Collaborative Research: Kali: A System for Sequential Programming of Multicore Processors
CSR:大型:协作研究:Kali:多核处理器顺序编程系统
- 批准号:
1111766 - 财政年份:2011
- 资助金额:
$ 73.97万 - 项目类别:
Standard Grant
Language and System Support for Petascale Irregular Applications
对 Petascale 不规则应用程序的语言和系统支持
- 批准号:
0833162 - 财政年份:2008
- 资助金额:
$ 73.97万 - 项目类别:
Standard Grant
The Galois Approach to Optimistic Parallelization
乐观并行化的伽罗瓦方法
- 批准号:
0702353 - 财政年份:2007
- 资助金额:
$ 73.97万 - 项目类别:
Standard Grant
CSR-AES: Optimizations for Optimistic Parallelization Systems
CSR-AES:乐观并行化系统的优化
- 批准号:
0719966 - 财政年份:2007
- 资助金额:
$ 73.97万 - 项目类别:
Continuing Grant
相似国自然基金
复合低维拓扑材料中等离激元增强光学响应的研究
- 批准号:12374288
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
中等垂直风切变下非对称型热带气旋快速增强的物理机制研究
- 批准号:42305004
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于挥发性分布和氧化校正的大气半/中等挥发性有机物来源解析方法构建
- 批准号:42377095
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于机器学习和经典电动力学研究中等尺寸金属纳米粒子的量子表面等离激元
- 批准号:22373002
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
托卡马克偏滤器中等离子体的多尺度算法与数值模拟研究
- 批准号:12371432
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: CSR: Medium: Scaling Secure Serverless Computing on Heterogeneous Datacenters
协作研究:CSR:中:在异构数据中心上扩展安全无服务器计算
- 批准号:
2312206 - 财政年份:2023
- 资助金额:
$ 73.97万 - 项目类别:
Continuing Grant
Collaborative Research: CSR: Medium: Architecting GPUs for Practical Homomorphic Encryption-based Computing
协作研究:CSR:中:为实用的同态加密计算构建 GPU
- 批准号:
2312276 - 财政年份:2023
- 资助金额:
$ 73.97万 - 项目类别:
Continuing Grant
Collaborative Research: CSR: Medium: Fortuna: Characterizing and Harnessing Performance Variability in Accelerator-rich Clusters
合作研究:CSR:Medium:Fortuna:表征和利用富含加速器的集群中的性能变异性
- 批准号:
2312689 - 财政年份:2023
- 资助金额:
$ 73.97万 - 项目类别:
Continuing Grant
Collaborative Research: CSR: Medium: Fortuna: Characterizing and Harnessing Performance Variability in Accelerator-rich Clusters
合作研究:CSR:Medium:Fortuna:表征和利用富含加速器的集群中的性能变异性
- 批准号:
2401244 - 财政年份:2023
- 资助金额:
$ 73.97万 - 项目类别:
Continuing Grant
Collaborative Research: CSR: Medium: Scaling Secure Serverless Computing on Heterogeneous Datacenters
协作研究:CSR:中:在异构数据中心上扩展安全无服务器计算
- 批准号:
2312207 - 财政年份:2023
- 资助金额:
$ 73.97万 - 项目类别:
Continuing Grant