Magnetic-Free, Non-Reciprocal Integrated Nanophotonic Components Based on Angular-Momentum Bias

基于角动量偏置的无磁、非互易集成纳米光子元件

基本信息

  • 批准号:
    1406235
  • 负责人:
  • 金额:
    $ 35.95万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-09-01 至 2017-08-31
  • 项目状态:
    已结题

项目摘要

Magnetic-Free, Non-Reciprocal Nanophotonic Components Based on Angular-Momentum BiasOptical isolator i.e., devices that allow photons to travel in one direction, but prohibit reverse propagation play a crucial role to route optical signals in optical fiber networks and to provide stability in laser operation. Commercially available isolators today are exclusively based on magnetically-biased garnets or ferromagnetic materials. However, because of the weak character of magneto-optical effects, they are typically based on bulky optical components, they are based on expensive materials, and they are impossible to integrate in a nanophotonic platform due to lattice mismatch with conventional substrates. The objective of this effort consists in introducing new theoretical concepts and design principles, as well as experimentally realizing integrated nanophotonic devices that can isolate without requiring magnetic effects. Our approach is centered on the nanophotonic analog to the Zeeman effect, the physical mechanism based on which conventional isolation is realized with magnetic materials: we will be able to induce a strong isolation on-chip by biasing with angular-momentum suitably designed "meta-atoms" in the form of spatio-temporally modulated nanoring resonators. The findings of this project are expected to attract significant interest from the nanophotonics industry, since monolithic integration of non-reciprocal nanodevices can dramatically minimize the cost and footprint of these essential devices. More broadly, the proposed research combines a plethora of exciting topics in electrical engineering, that can directly involve undergraduate and graduate students in some of the most important fields of electrical engineering such as nanophotonics, metamaterials, integrated electronics, nanofabrication, and modeling, opening unique opportunities to inspire the next generation of scientists and researchers, with special attention to under-represented minorities.The proposed research introduces disruptive concepts for nanophotonics, allowing the realization of magnetic-free optical components that can break Lorentz reciprocity without requiring magnetic bias or special ferromagnetic response. Being fully based on components and materials that are already available in conventional nanophotonic boards, such as dielectric waveguides and semiconductor junctions, the newly proposed non-reciprocal components can be directly integrated into conventional nanophotonic systems. In addition, the proposed structures will optimally benefit from recent advances in the quickly growing fields of silicon photonics, nano-optics and electronics. At completion of this effort, we will have demonstrated non-reciprocal optical components based on angular-momentum biasing, achieved with suitable spatio-temporal modulation of resonant nanorings based on electric radio-frequency signals. The careful combination of a strong resonance and of a precise form of spatiotemporal modulation in the azimuthal direction will be able to drastically enhance the otherwise weak electro-optical effects responsible for spatio-temporal modulation, thus leading to giant non-reciprocity within a footprint comparable or smaller than the wavelength. Our additional investigations of angular spatio-temporal modulation in plasmonics and graphene-based platforms will set the basis for a new technology platform able to process and control light in novel ways at a deeply subwavelength scale.
无磁性的非转录纳米光子成分基于角度摩肌的异常隔离器,即允许光子可以沿一个方向传播但禁止反向繁殖的设备对路由光纤网络中的光学信号起着至关重要的作用,并在激光器操作中提供稳定性。当今的市售隔离器仅基于磁性石榴石或铁磁材料。但是,由于磁光效应的特征较弱,它们通常基于笨重的光学组件,它们基于昂贵的材料,并且由于与常规底物的晶格不匹配,它们无法集成在纳米光子平台中。这项工作的目的是引入新的理论概念和设计原理,以及实验实现可以隔离而无需磁性效应的综合纳米光器件。我们的方法集中在Zeeman效应的纳米光类似物上,Zeeman效应是基于磁性材料实现常规隔离的物理机制:我们将能够以适用于Angular-Momentum设计的“元原子”以空间调节的nananoring Resonator形式诱导强烈的芯片。预计该项目的发现将引起纳米光子型行业的重大兴趣,因为非重新磁性纳米电视的单片整合可以大大减少这些基本设备的成本和占地面积。更广泛地说,拟议的研究结合了电气工程中的许多令人兴奋的主题,可以直接涉及一些最重要的电气工程领域的本科生和研究生,例如纳米素技术,超材料,超材料,综合电子学,纳米制作,纳米型,纳米型,纳米型和模型,启发下一代科学家的独特机会。引入了纳米光子学的破坏性概念,从而实现了无磁的光学成分,这些光学成分可以破坏Lorentz互惠,而无需磁性偏差或特殊的铁磁响应。完全基于已经在常规纳米光板中已经可用的组件和材料,例如介电波导和半导体交界处,新提出的非核心成分可以直接整合到常规的纳米光子系统中。此外,所提出的结构将在硅光子学,纳米晶体和电子产品的快速增长领域的最新进展中最佳地受益。完成这项工作后,我们将基于Angular-Momentum偏置来证明非重生光学组件,并通过基于电气射频信号的合适时空调制谐振纳米词来实现。在方位角方向上的牢固共振和精确形式的时空调制形式的仔细组合将能够极大地增强原本弱的电流效应,导致时空调制,从而导致巨大的非近代性在脚印内或比波长更小。我们对基于等离子体的平台和基于石墨烯的平台中角时空调制的其他研究将为一个新的技术平台提供基础,该平台能够以深层的次波长量表以新颖的方式处理和控制光线。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrea Alu其他文献

Andrea Alu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrea Alu', 18)}}的其他基金

Collaborative Research: CNS Core: Medium: Exploiting New Degrees-of-Freedom in Wireless Networks with Reprogrammable Intelligent Metagratings
合作研究:CNS 核心:媒介:利用可重新编程的智能元光栅在无线网络中开发新的自由度
  • 批准号:
    2106752
  • 财政年份:
    2021
  • 资助金额:
    $ 35.95万
  • 项目类别:
    Standard Grant
Travel Funds for The Fourteenth International Congress on Artificial Materials for Novel Wave Phenomena – Metamaterials 2020; New York, New York; September 28 to October 3, 2020
第十四届国际新浪潮现象人造材料大会旅费 — 超材料 2020;
  • 批准号:
    2028433
  • 财政年份:
    2020
  • 资助金额:
    $ 35.95万
  • 项目类别:
    Standard Grant
2015 Waterman Award
2015年沃特曼奖
  • 批准号:
    1949002
  • 财政年份:
    2019
  • 资助金额:
    $ 35.95万
  • 项目类别:
    Standard Grant
EFRI NewLAW: New frontiers for topologically-protected propagation of light, sound, elastic and mechanical waves
EFRI NewLAW:光、声、弹性和机械波拓扑保护传播的新领域
  • 批准号:
    1641069
  • 财政年份:
    2016
  • 资助金额:
    $ 35.95万
  • 项目类别:
    Standard Grant
2015 Waterman Award
2015年沃特曼奖
  • 批准号:
    1547728
  • 财政年份:
    2015
  • 资助金额:
    $ 35.95万
  • 项目类别:
    Standard Grant
Collaborative Research: Science and Engineering of Topological Acoustics and Mechanics
合作研究:拓扑声学与力学科学与工程
  • 批准号:
    1537932
  • 财政年份:
    2015
  • 资助金额:
    $ 35.95万
  • 项目类别:
    Standard Grant
CAREER: Sensing, Imaging and Energy Applications of Metamaterial Cloaks
职业:超材料斗篷的传感、成像和能源应用
  • 批准号:
    0953311
  • 财政年份:
    2010
  • 资助金额:
    $ 35.95万
  • 项目类别:
    Standard Grant

相似国自然基金

基于Fe-N-BC/PMS体系的自由基与非自由基协同降解地下水中磺胺类抗生素的机制研究
  • 批准号:
    42377036
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
非手性配体构筑的钛中心手性催化剂的设计合成及其催化的不对称自由基反应研究
  • 批准号:
    22371168
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
自由基介导的VOCs大气非均相转化生成有机硫酸脂反应机制研究
  • 批准号:
    42377364
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
大气中锰纳米颗粒物表界面介导的氧自由基形成与非均相化学反应研究
  • 批准号:
    22376103
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
基于非自由基途径降解四环素类抗生素的皮胶原基炭催化剂构筑及其活性位点调控
  • 批准号:
    22378275
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Next-Generation Whole-Body MRI for Detection and Assessment of Therapy Response in Bone Lesions
用于检测和评估骨病变治疗反应的新一代全身 MRI
  • 批准号:
    10716642
  • 财政年份:
    2023
  • 资助金额:
    $ 35.95万
  • 项目类别:
Advancing fMRI Acquisition through Dissemination of EPTI- An Efficient Distortion-Free Multi-Contrast Imaging Technology
通过传播 EPTI(一种高效的无失真多重对比成像技术)推进 fMRI 采集
  • 批准号:
    10572005
  • 财政年份:
    2023
  • 资助金额:
    $ 35.95万
  • 项目类别:
Redox manipulation of iron to improve glioblastoma therapy: A phase 1 trial
铁的氧化还原操作可改善胶质母细胞瘤治疗:1 期试验
  • 批准号:
    10651509
  • 财政年份:
    2023
  • 资助金额:
    $ 35.95万
  • 项目类别:
Improving Phenotypic Classification and Prediction of Treatment Outcomes in Patients with Non-ischemic Cardiomyopathy and Functional Mitral Regurgitation
改善非缺血性心肌病和功能性二尖瓣反流患者的表型分类和治疗结果预测
  • 批准号:
    10717066
  • 财政年份:
    2023
  • 资助金额:
    $ 35.95万
  • 项目类别:
Predictive modeling of acute rejection in pediatric heart transplant recipients
儿童心脏移植受者急性排斥反应的预测模型
  • 批准号:
    10503263
  • 财政年份:
    2022
  • 资助金额:
    $ 35.95万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了