Geometry and Complexity Theory
几何与复杂性理论
基本信息
- 批准号:1405348
- 负责人:
- 金额:$ 21.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Complexity theory addresses both practical and theoretical questions. Practical issues include developing new, efficient algorithms for computations that need to be done frequently (such as multiplying matrices), as well as determining whether more efficient algorithms than the ones already known may exist. The theoretical aspects include questions almost philosophical in nature, such as: Is there really a difference between intuition and systematic problem solving? (This question was asked by Godel and contributed to the development of the famous P versus NP conjecture.) The project will use modern mathematical tools to address these questions, more specifically, algebraic geometry and representation theory. Although the research for this project is driven by questions from computer science, these questions are of interest to mathematics in their own right and have the potential to guide future mathematical research in the way physics has done in recent years.This project focuses on two central questions in complexity theory: the complexity of matrix multiplication and the Geometric Complexity Theory approach to Valiant's conjectures. Regarding matrix multiplication, linear algebra is central to all applications of mathematics, and matrix multiplication is the essential operation of linear algebra. In 1969 Strassen discovered a new algorithm to multiply matrices significantly faster than the standard algorithm. This and subsequent work has led to the astounding conjecture that asymptotically, it is essentially almost as easy to multiply matrices as it is to add them. It is a central question to determine just how efficiently one can multiply matrices, both practically and asymptotically. This project will prove bounds for how efficiently matrices can be multiplied. Regarding Geometric Complexity Theory, a central question in theoretical computer science is whether brute force calculations can be avoided in problems such as the traveling salesman problem. This is the essence of the P versus NP conjecture. The Geometric Complexity Theory (GCT) program addresses such questions using geometric methods. GCT touches on central questions in algebraic geometry, differential geometry, representation theory and combinatorics. The goals of this project are (i) to better establish the mathematical foundations of GCT by solving open problems in combinatorics and classical algebraic geometry and (ii) to solve complexity problems considered more tractable, such as determining whether or not the determinant polynomial admits a small formula.
复杂性理论解决了实用和理论问题。实际问题包括为需要经常完成的计算开发新的,有效的算法(例如,矩阵),以及确定是否比已经知道的更有效算法更有效。理论方面包括本质上几乎哲学上的问题,例如:直觉和系统问题解决之间确实存在区别吗? (Godel提出了这个问题,并为著名的P与NP猜想的发展做出了贡献。)该项目将使用现代的数学工具来解决这些问题,更具体地说,是代数的几何学和代表理论。尽管该项目的研究是由计算机科学的问题驱动的,但这些问题本身对数学感兴趣,并且有可能以物理学近年来的方式指导未来的数学研究。该项目重点介绍了复杂性理论中的两个核心问题:矩阵乘法的复杂性和几何学复杂性的方法对Valiant的猜想方法。关于矩阵乘法,线性代数对于数学的所有应用都是核心,而矩阵乘法是线性代数的必要操作。 1969年,斯特拉森(Strassen)发现了一种新算法,其倍增矩阵的速度明显快于标准算法。这项工作和随后的工作导致了一个惊人的猜想,即渐近地,从本质上讲,矩阵乘以添加它们几乎就像添加它们一样容易。确定实际上和渐近矩阵的有效矩阵的有效效率是一个核心问题。 该项目将证明如何将矩阵乘以乘以。关于几何复杂性理论,理论计算机科学中的一个核心问题是,是否可以在旅行推销员问题等问题中避免蛮力计算。这是P与NP猜想的本质。几何复杂性理论(GCT)程序使用几何方法解决了此类问题。 GCT涉及代数几何,差异几何,表示理论和组合学中的中心问题。该项目的目标是(i)通过解决组合学和经典代数几何形状和(ii)的开放问题来更好地建立GCT的数学基础,以解决认为更容易拖延的复杂性问题,例如确定确定性多项式是否可以接受小型公式。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A $2{\mathbf{n}}^2-{\text{log}}_2({\mathbf{n}})-1$ lower bound for the border rank of matrix multiplication
- DOI:10.1093/imrn/rnx025
- 发表时间:2018-08
- 期刊:
- 影响因子:1
- 作者:J. Landsberg;M. Michałek
- 通讯作者:J. Landsberg;M. Michałek
Matrix product states and the quantum max-flow/min-cut conjectures
矩阵乘积状态和量子最大流/最小割猜想
- DOI:10.1063/1.5026985
- 发表时间:2018
- 期刊:
- 影响因子:1.3
- 作者:Gesmundo, Fulvio;Landsberg, J. M.;Walter, Michael
- 通讯作者:Walter, Michael
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joseph Landsberg其他文献
Joseph Landsberg的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joseph Landsberg', 18)}}的其他基金
AF: Small: The complexity of matrix multiplication
AF:小:矩阵乘法的复杂度
- 批准号:
2203618 - 财政年份:2022
- 资助金额:
$ 21.88万 - 项目类别:
Standard Grant
AF: Small: Geometry and Complexity Theory
AF:小:几何和复杂性理论
- 批准号:
1814254 - 财政年份:2018
- 资助金额:
$ 21.88万 - 项目类别:
Standard Grant
Texas Geometry and Topology Conference
德克萨斯几何和拓扑会议
- 批准号:
1812040 - 财政年份:2018
- 资助金额:
$ 21.88万 - 项目类别:
Standard Grant
Conference/Workshop New Directions in Exterior Differential Systems
会议/研讨会外部差速系统的新方向
- 批准号:
1321212 - 财政年份:2013
- 资助金额:
$ 21.88万 - 项目类别:
Standard Grant
Anlaytic Geometry and Representation Theory
解析几何与表示论
- 批准号:
1006353 - 财政年份:2010
- 资助金额:
$ 21.88万 - 项目类别:
Continuing Grant
Analytic Geometry and Representation Theory
解析几何与表示论
- 批准号:
0805782 - 财政年份:2008
- 资助金额:
$ 21.88万 - 项目类别:
Standard Grant
Geometric Applications of Exterior Differential Systems
外差速系统的几何应用
- 批准号:
0539421 - 财政年份:2005
- 资助金额:
$ 21.88万 - 项目类别:
Standard Grant
Collaborative Research: Exterior Differential System Approach to Periodic Orbits in Hamiltonian Systems
合作研究:哈密顿系统中周期轨道的外微分系统方法
- 批准号:
0505468 - 财政年份:2005
- 资助金额:
$ 21.88万 - 项目类别:
Standard Grant
Geometric Applications of Exterior Differential Systems
外差速系统的几何应用
- 批准号:
0305829 - 财政年份:2003
- 资助金额:
$ 21.88万 - 项目类别:
Standard Grant
Mathematical Sciences: Geometric Applications of Exterior Differential Systems
数学科学:外微分系统的几何应用
- 批准号:
9626640 - 财政年份:1996
- 资助金额:
$ 21.88万 - 项目类别:
Standard Grant
相似国自然基金
物理-数据混合驱动的复杂曲面多模态视觉检测理论与方法
- 批准号:52375516
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向复杂网络结构数据的空间自回归模型理论与应用研究
- 批准号:72371241
- 批准年份:2023
- 资助金额:43 万元
- 项目类别:面上项目
复杂多重先验信息的试验设计理论与应用研究
- 批准号:12361053
- 批准年份:2023
- 资助金额:27 万元
- 项目类别:地区科学基金项目
车联网环境下复杂混合交通系统优化调控理论与关键技术
- 批准号:62333015
- 批准年份:2023
- 资助金额:226 万元
- 项目类别:重点项目
基于新一代信息技术的复杂油气储层地震勘探理论和方法
- 批准号:42330801
- 批准年份:2023
- 资助金额:231 万元
- 项目类别:重点项目
相似海外基金
Conference: Tensor Invariants in Geometry and Complexity Theory
会议:几何和复杂性理论中的张量不变量
- 批准号:
2344680 - 财政年份:2024
- 资助金额:
$ 21.88万 - 项目类别:
Standard Grant
Algebraic complexity theory via the algebraic geometry and representation theory of generalised continued fractions
通过代数几何和广义连分数表示论的代数复杂性理论
- 批准号:
EP/W014882/2 - 财政年份:2023
- 资助金额:
$ 21.88万 - 项目类别:
Research Grant
Algebraic complexity theory via the algebraic geometry and representation theory of generalised continued fractions
通过代数几何和广义连分数表示论的代数复杂性理论
- 批准号:
EP/W014882/1 - 财政年份:2022
- 资助金额:
$ 21.88万 - 项目类别:
Research Grant
RUI: Geometry and Complexity in the Model Theory of Groups
RUI:群模型论中的几何和复杂性
- 批准号:
1954127 - 财政年份:2020
- 资助金额:
$ 21.88万 - 项目类别:
Standard Grant
AF: Small: Geometry and Complexity Theory
AF:小:几何和复杂性理论
- 批准号:
1814254 - 财政年份:2018
- 资助金额:
$ 21.88万 - 项目类别:
Standard Grant