Orthogonal Polynomials and Random Matrices
正交多项式和随机矩阵
基本信息
- 批准号:1362208
- 负责人:
- 金额:$ 24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-07-15 至 2018-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
It was the physicist Eugene Wigner who in the 1950's first used eigenvalues of random matrices to model the interactions of neutrons for heavy nuclei. Random matrices have since become a major research area with connections to mathematical physics, probability theory, number theory, numerical analysis, and orthogonal polynomials. Indeed, there is a well known anecdote about an interaction in the early 1970's between the physicist Freeman Dyson, and number theorist Hugh Montgomery, at Princeton, where their discussions led to the realization that there is a link between random matrices and the Riemann Zeta function of number theory. The PI's focus is on "universal" behavior of these random matrices: certain features seem to be independent of almost any underlying assumption, and consequently hold very generally. This has been known for a long time, and has been explored by both mathematical physicists and pure mathematicians. The techniques that have been developed to study this "universality" have been useful in many other areas of mathematics. This proposal will develop appropriate tools from orthogonal polynomials and classical analysis, and use these to establish "universal" features in as great a generality as possible. There will be also be an educational component to the project, involving collaboration with other researchers, organization of conferences, editorial duties, and supervision of undergraduate and/or graduate students.The specific goals of the project include investigating the ramifications and generalizations of a variational property recently established by the PI. It is hoped that this will enable one to establish universality limits for Hermitian ensembles under minimal conditions on measures with compact support, and also for varying measures. Monotonicity in the measure, and techniques of orthogonal polynomials are key tools in this approach. Somewhat more ambitious is the goal of extending the variational principle to beta-ensembles. This will include asymptotics of generalized Christoffel functions involving alternating polynomials in several variables. Discrete analogues will also be studied. Another major goal is developing the theory of Dirichlet orthogonal polynomials, and investigating their application to the Lindelof hypothesis for the Riemann Zeta function. Additional goals include investigating biorthogonal polynomials, and related numerical quadratures; orthogonal polynomials on curves in the plane, and Pade approximations.
它是物理学家尤金·威格(Eugene Wigner),他在1950年的第一次使用随机矩阵的特征值来对中子的相互作用对重核进行建模。此后,随机矩阵已成为与数学物理学,概率理论,数量理论,数值分析和正交多项式的联系的主要研究领域。的确,在1970年代初期的物理学家弗里曼·戴森(Freeman Dyson)和普林斯顿大学的数字理论家休·蒙哥马利(Hugh Montgomery)之间的互动中,有一个众所周知的轶事,他们的讨论导致人们意识到随机矩阵与riemann zeta zeta Zeta Zeta函数的数字理论之间存在联系。 PI的重点是这些随机矩阵的“通用”行为:某些特征似乎与几乎所有基本假设无关,因此非常普遍地保持。这已经闻名了很长时间,并且已经被数学物理学家和纯数学家探索。研究这种“普遍性”的技术在许多其他数学领域都有用。该建议将从正交多项式和经典分析中开发出适当的工具,并使用这些工具来建立尽可能伟大的“通用”特征。该项目还将有一个教育组成部分,涉及与其他研究人员的合作,组织,编辑职责以及对本科生和/或研究生的监督。该项目的具体目标包括调查PI最近确定的各种财产的后果和概括。希望这将使人们能够在最小的条件下对紧凑的支持以及各种措施的措施建立普遍的限制。衡量标准的单调性,正交多项式的技术是这种方法的关键工具。更雄心勃勃的是将各种原理扩展到β浓度的目标。这将包括涉及多个变量中的多项式的广义基督教函数的渐近学。也将研究离散类似物。另一个主要目标是开发迪里奇(Dirichlet)正交多项式的理论,并研究了其在林德(Riemann)Zeta函数中的应用中的应用。其他目标包括研究生物三相的多项式和相关的数值二次;平面曲线上的正交多项式,并逐渐近似。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Doron Lubinsky其他文献
Doron Lubinsky的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Doron Lubinsky', 18)}}的其他基金
Multipoint Pade Approximation, Orthogonal Polynomials, and Random Matrices
多点 Pade 近似、正交多项式和随机矩阵
- 批准号:
1800251 - 财政年份:2018
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
2017 Computational Methods and Function Theory Conference
2017年计算方法与函数理论会议
- 批准号:
1713763 - 财政年份:2017
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Universality Limits, Orthogonal Polynomials and Spaces of Entire Functions
普适性极限、正交多项式和全函数空间
- 批准号:
1001182 - 财政年份:2010
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
Universality Limits, Orthogonal Polynomials and Weighted Polynomial Approximation
普适性极限、正交多项式和加权多项式近似
- 批准号:
0700427 - 财政年份:2007
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
Constructive Functions Tech-04: An International Conference
构造函数 Tech-04:国际会议
- 批准号:
0411729 - 财政年份:2004
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Bernstein Constants, Orthogonal Polynomials and Pade Approximation
伯恩斯坦常数、正交多项式和 Pade 近似
- 批准号:
0400446 - 财政年份:2004
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
相似国自然基金
随机矩阵酉系综与正交多项式中的Painlevé分析
- 批准号:12201333
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
随机矩阵酉系综与正交多项式中的Painlevé分析
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
随机双稳态压电振动能量采集系统的动力学与控制
- 批准号:11672232
- 批准年份:2016
- 资助金额:62.0 万元
- 项目类别:面上项目
重力坝可靠度分析的非正交多项式稀疏展开随机响应面法研究
- 批准号:51109169
- 批准年份:2011
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于Riemann-Hilbert方法的相关问题研究
- 批准号:11026205
- 批准年份:2010
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
相似海外基金
Multi-aspects of beta ensembles and related random matrix models
β 系综和相关随机矩阵模型的多方面
- 批准号:
19K14547 - 财政年份:2019
- 资助金额:
$ 24万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Multipoint Pade Approximation, Orthogonal Polynomials, and Random Matrices
多点 Pade 近似、正交多项式和随机矩阵
- 批准号:
1800251 - 财政年份:2018
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Spectral measures of random matrices and universality of random Jacobi matrices
随机矩阵的谱测度和随机雅可比矩阵的普适性
- 批准号:
16K17616 - 财政年份:2016
- 资助金额:
$ 24万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Non-perturbative effects in complex systems: A study through the theory of random matrices and orthogonal polynomials
复杂系统中的非微扰效应:随机矩阵和正交多项式理论的研究
- 批准号:
EP/F014074/1 - 财政年份:2007
- 资助金额:
$ 24万 - 项目类别:
Research Grant
Non-perturbative effects in complex systems: A study through the theory of random matrices and orthogonal polynomials
复杂系统中的非微扰效应:随机矩阵和正交多项式理论的研究
- 批准号:
EP/F014198/1 - 财政年份:2007
- 资助金额:
$ 24万 - 项目类别:
Research Grant