FRG: Collaborative Research: Developing Mathematical Algorithms for Adaptive, Geodesic Mesh MHD for use in Astrophysics and Space Physics

FRG:协作研究:开发用于天体物理学和空间物理学的自适应测地网格 MHD 的数学算法

基本信息

  • 批准号:
    1361197
  • 负责人:
  • 金额:
    $ 28.12万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-07-01 至 2017-06-30
  • 项目状态:
    已结题

项目摘要

Simulation tools for astrophysical and space physics systems share a set of common requirements: they need to robustly simulate magnetohydrodynamic (MHD) flows around spherical bodies with high accuracy. This multidisciplinary project will develop algorithms from applied mathematics for robust, highly accurate non-relativistic MHD on geodesic meshes. In the past few years new schemes for simulating conservation laws with truly multi-dimensional divergence free approximate Riemann solvers for applications have been developed. Currently, these Riemann solvers are only available for two-dimensional rectangular structured meshes for MHD. This project will employ a geodesic mesh to provide the best possible coverage for simulations of magnetohydrodynamic flows around spherical bodies and to incorporate Delaunay triangulation to achieve high accuracy. Divergence-free formulations of vector fields can be found on these triangular meshes. Simulation tools for astrophysical and space physics systems share a set of common requirements: they need to robustly simulate magnetohydrodynamic (MHD) flows around spherical bodies with high accuracy. Building a computational framework, based on shared needs in space physics and astrophysics, will unleash important synergies between these two allied fields of study. The MHD equations are a combination of the Navier-Stokes equations for fluid dynamics and Maxwell's equations for electromagnetism. Thus, the MHD equations require numerical solvers that incorporate the hydrodynamic fluid motion and enforce the divergence free magnetic field, i.e. no magnetic monopoles, requirements on the geometric domain approximated by a polygonal mesh. The nature of the MHD equations closely couples solution methodologies to the underlying mesh, making it necessary to develop new algorithms for the divergence-free reconstruction of the magnetic field on novel mesh structures. Additionally, the MHD system is formulated as a system of conservation laws. With a traditional conservation law, the fluxes can be evolved on a dimension-by-dimension basis. The fact that different flux components are coupled in an involution-constrained system also makes a case for multidimensional upwinding based on multidimensional Riemann solvers. Such solver strategies are again intimately coupled to the mesh structure.
天体物理和空间物理系统的仿真工具有一组共同的要求:它们需要以高精度稳健地模拟球体周围的磁流体动力学 (MHD) 流。这个多学科项目将开发应用数学算法,以实现测地网格上稳健、高精度的非相对论 MHD。在过去的几年中,已经开发出用于模拟守恒定律的新方案,该方案具有真正的多维无散度近似黎曼求解器的应用。目前,这些黎曼求解器仅适用于 MHD 的二维矩形结构网格。该项目将采用测地网格为球体周围磁流体动力流的模拟提供尽可能最佳的覆盖范围,并结合德劳内三角测量以实现高精度。可以在这些三角形网格上找到矢量场的无散公式。天体物理和空间物理系统的仿真工具有一组共同的要求:它们需要以高精度稳健地模拟球体周围的磁流体动力学 (MHD) 流。基于空间物理学和天体物理学的共同需求构建计算框架,将释放这两个相关研究领域之间的重要协同作用。 MHD 方程是流体动力学纳维-斯托克斯方程和电磁学麦克斯韦方程的组合。 因此,MHD 方程需要数值求解器,其中包含流体动力流体运动并强制无发散磁场,即无磁单极子,对由多边形网格近似的几何域的要求。 MHD 方程的本质将求解方法与底层网格紧密结合在一起,因此有必要开发新的算法来在新颖的网格结构上进行无发散的磁场重建。此外,MHD 系统被制定为守恒定律系统。利用传统的守恒定律,通量可以在逐维的基础上演化。不同通量分量在对合约束系统中耦合的事实也为基于多维黎曼求解器的多维逆风提供了理由。这种求解器策略再次与网格结构紧密耦合。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dinshaw Balsara其他文献

Dinshaw Balsara的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dinshaw Balsara', 18)}}的其他基金

CDS&E: AST: Collaborative Research: Computational science in support of space missions: plasma turbulence modeling on geodesic meshes
CDS
  • 批准号:
    2009776
  • 财政年份:
    2020
  • 资助金额:
    $ 28.12万
  • 项目类别:
    Standard Grant
CDS&E: ECCS: Collaborative Research: PNPM Schemes Adapted for the First Time to Computational Electrodynamics for Solving 21st Century Problems
CDS
  • 批准号:
    1904774
  • 财政年份:
    2019
  • 资助金额:
    $ 28.12万
  • 项目类别:
    Standard Grant
Collaborative Research: Simulating Two-Fluid MHD Turbulence in Star Forming Molecular Clouds on the Blue Waters System
合作研究:模拟 Blue Waters 系统上恒星形成分子云中的两流体 MHD 湍流
  • 批准号:
    1713765
  • 财政年份:
    2017
  • 资助金额:
    $ 28.12万
  • 项目类别:
    Standard Grant
CDS&E: Collaborative: A Higher Order PDE Toolkit for Computational Mathematics and Astrophysical Turbulence
CDS
  • 批准号:
    1622457
  • 财政年份:
    2016
  • 资助金额:
    $ 28.12万
  • 项目类别:
    Standard Grant
XPS: FULL: FP: Tools and Algorithms for Resilient, Power-efficient ExaScale Computing Using the GNU-CAF Compiler
XPS:FULL:FP:使用 GNU-CAF 编译器实现弹性、高能效 ExaScale 计算的工具和算法
  • 批准号:
    1533850
  • 财政年份:
    2015
  • 资助金额:
    $ 28.12万
  • 项目类别:
    Standard Grant
Exploring the Role of Coarray Fortran for Highly Parallel Structured Adaptive Mesh Refinement Calculations
探索 Coarray Fortran 在高度并行结构化自适应网格细化计算中的作用
  • 批准号:
    1307369
  • 财政年份:
    2013
  • 资助金额:
    $ 28.12万
  • 项目类别:
    Standard Grant
Multidimensional Riemann Solvers and Higher Order Schemes with AMR for Computational Astrophysics
用于计算天体物理学的多维黎曼求解器和具有 AMR 的高阶方案
  • 批准号:
    1009091
  • 财政年份:
    2010
  • 资助金额:
    $ 28.12万
  • 项目类别:
    Standard Grant
RAPID: Courseware Development for Computational Astrophysics
RAPID:计算天体物理学课件开发
  • 批准号:
    0947765
  • 财政年份:
    2009
  • 资助金额:
    $ 28.12万
  • 项目类别:
    Standard Grant
Simulating the Turbulent, Multiphase Interstellar Medium: Comparing with Observations
模拟湍流多相星际介质:与观测结果进行比较
  • 批准号:
    0607731
  • 财政年份:
    2006
  • 资助金额:
    $ 28.12万
  • 项目类别:
    Continuing Grant
Advances in Numerical Magnetohydrodynamics -- Novel Schemes and Adaptive Mesh Refinement on Structured Meshes
数值磁流体动力学进展——结构化网格的新颖方案和自适应网格细化
  • 批准号:
    0204640
  • 财政年份:
    2002
  • 资助金额:
    $ 28.12万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于交易双方异质性的工程项目组织间协作动态耦合研究
  • 批准号:
    72301024
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向5G超高清移动视频传输的协作NOMA系统可靠性研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向协作感知车联网的信息分发时效性保证关键技术研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
数据物理驱动的车间制造服务协作可靠性机理与优化方法研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
医保基金战略性购买促进远程医疗协作网价值共创的制度创新研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    45 万元
  • 项目类别:
    面上项目

相似海外基金

FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
  • 批准号:
    2244978
  • 财政年份:
    2023
  • 资助金额:
    $ 28.12万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245017
  • 财政年份:
    2023
  • 资助金额:
    $ 28.12万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245111
  • 财政年份:
    2023
  • 资助金额:
    $ 28.12万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245077
  • 财政年份:
    2023
  • 资助金额:
    $ 28.12万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2244879
  • 财政年份:
    2023
  • 资助金额:
    $ 28.12万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了