CAREER: Dynamics, Correlations and Disorder in Topological Matter
职业:拓扑物质中的动力学、相关性和无序性
基本信息
- 批准号:1350663
- 负责人:
- 金额:$ 45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-15 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
NONTECHNICAL SUMMARYThis CAREER award supports integrated theoretical research and education focused on the role of external driving forces, strong interactions among electrons, and defects and imperfections in topological states of electronic matter. Topological states are characterized by properties that in a fundamental sense have a geometric origin and are unchanged by small changes of the material, and are connected to states around the surface and edges of the material that can conduct electricity without dissipation, even when the bulk is insulating. The research thrusts are aimed at formulating concepts to advance understanding of topological states. They address specific questions of practical importance by virtue of studying realistic physical systems and their potential applications. This project may contribute to the foundations of new technologies such as quantum computation, precision metrology, energy conversion, and low-power electronic devices. The integrated education activities will bring recent scientific advances and new concepts to high school students of diverse socio-economic and ethnic backgrounds. Educational materials developed will be made publicly available. This effort will be informed by, and will contribute to, science education research and the nation's strategic education needs to meet the challenge of finding and utilizing the materials of future technologies. The Principle Investigator will also help improve the participation and diversity of students in science through existing efforts at Indiana University.TECHNICAL SUMMARYThis CAREER award supports the Principle Investigator's (PI) integrated research, education and outreach activities focused on the role of non-equilibrium dynamics, correlations and disorder in topological states of matter, especially in topological insulators and superconductors, and their potential applications. These activities have three aims:1. To study the dynamical properties of topological states, in particular the realization, detection and manipulation of topological bound states, such as Majorana fermions, in periodically driven systems.2. To study disorder and fluctuations in dynamic and static topological states, especially their role in the realization of novel correlated topological states of matter, and the topological protection of quantum information and their applications.3. To institute an integrated and broad educational and outreach effort at K-12, undergraduate and graduate levels that fosters the students' understanding of organizational principles in condensed matter - including the role of topology, promotes the diversity of students in science, and prepares the next generation of scientists.The PI will use analytical approaches and numerical simulations combining models of various levels sophistication to elucidate the conceptual framework as well as the physically relevant properties and phenomena of real systems. The educational and outreach activities include the project Forefronts of Research Education Modules to develop short, inquiry-based units that bring recent advances to high school physics classrooms as well as summer research experience for underrepresented students and a seminar series for undergraduate and graduate students.
非技术摘要这一职业奖支持集成的理论研究和教育,重点是外部驱动力,电子之间的强烈互动以及电子物质拓扑状态的缺陷和缺陷。拓扑状态的特征是特性,在基本意义上具有几何起源,并且不受材料的微小变化的变化,并且与表面周围的状态和材料的边缘连接在一起,即使体积是绝缘的,这些材料的边缘和材料的边缘也可以在没有耗散的情况下进行电力。研究推力旨在制定概念以提高对拓扑状态的理解。他们通过研究现实的物理系统及其潜在应用来解决特定的实际重要性问题。该项目可能有助于新技术的基础,例如量子计算,精度计量学,能量转换和低功率电子设备。综合教育活动将为具有多种社会经济和种族背景的高中学生带来最新的科学进步和新概念。开发的教育材料将公开提供。这项努力将由科学教育研究和国家的战略教育所需的信息,并将为寻找和利用未来技术的材料的挑战所需的挑战。原则研究者还将通过印第安纳大学的现有努力来帮助提高学生参与科学的参与和多样性。技术摘要这一职业奖支持原则研究者(PI)综合研究,教育和外展活动的重点是非平衡动态,相关性,相关性和无序的作用,尤其是在拓平的拓扑状态,尤其是在拓扑质和超级胰蛋白学和超级质量上和超级构造和超级强制性和超级强制性的影响下。这些活动有三个目标:1。在定期驱动的系统中,研究拓扑状态的动力学特性,特别是对拓扑结合状态(例如Majorana fermions)的实现,检测和操纵。2。研究动态和静态拓扑状态的障碍和波动,尤其是它们在实现新的物质相关拓扑状态以及量子信息及其应用的拓扑保护中的作用。3。要在K -12中建立综合而广泛的教育和宣传工作,本科生和研究生级别促进了学生对凝结物质中组织原则的理解,包括拓扑的作用,促进拓扑的作用,促进学生在科学中的多样性,并准备下一代科学家。PI将使用分析方法和数字构图,以便将各种级别的概念构成概念的模型,并将其概念化为概念化的模型。真实系统的现象。教育和宣传活动包括研究教育模块的项目最前沿,以开发基于询问的简短单元,这些单位将最近的进步带到了高中物理教室以及夏季研究经验不足的学生的夏季研究经验以及本科生和研究生的研讨会系列。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Floquet-Engineered Valleytronics in Dirac Systems
- DOI:10.1103/physrevlett.116.016802
- 发表时间:2016-01-08
- 期刊:
- 影响因子:8.6
- 作者:Kundu, Arijit;Fertig, H. A.;Seradjeh, Babak
- 通讯作者:Seradjeh, Babak
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Babak Seradjeh其他文献
Babak Seradjeh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
锆合金的高温阳极极化行为及其与腐蚀动力学的相关性研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
锆合金的高温阳极极化行为及其与腐蚀动力学的相关性研究
- 批准号:52101104
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
新型原子精确配体保护金属纳米团簇激发态动力学与其结构相关性研究
- 批准号:12174114
- 批准年份:2021
- 资助金额:61 万元
- 项目类别:面上项目
基于空间相关性构造的调制波动力学隐身结构
- 批准号:
- 批准年份:2020
- 资助金额:62 万元
- 项目类别:面上项目
磷脂膜融合过程中蛋白与膜相互作用的曲率相关性及其分子机制研究
- 批准号:11902051
- 批准年份:2019
- 资助金额:28.0 万元
- 项目类别:青年科学基金项目
相似海外基金
RUI: Quantum Correlations and Dynamics of Ring Sensors and Simulators
RUI:环形传感器和模拟器的量子相关性和动力学
- 批准号:
2309025 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Taking Snapshots of Enzymatic Reactions Using X-ray Crystallography and Spectroscopy
使用 X 射线晶体学和光谱学拍摄酶反应快照
- 批准号:
10623717 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Temporal and spatial correlations in mortality dynamics: Applications to mortality/longevity risk management
死亡率动态的时间和空间相关性:在死亡/长寿风险管理中的应用
- 批准号:
RGPIN-2021-02409 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Discovery Grants Program - Individual
CAREER: Correlations, responses and dynamics of interacting topological matter
职业:相互作用的拓扑物质的相关性、响应和动态
- 批准号:
2141966 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
Effective thermodynamics of reduced density matices
减密度材料的有效热力学
- 批准号:
22K14007 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Grant-in-Aid for Early-Career Scientists