SHF: Small: Collaborative Research: Exploring Energy-Efficient GPGPUs Through Emerging Technology Integration

SHF:小型:协作研究:通过新兴技术集成探索节能 GPGPU

基本信息

  • 批准号:
    1320100
  • 负责人:
  • 金额:
    $ 24.37万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-08-01 至 2018-07-31
  • 项目状态:
    已结题

项目摘要

Nowadays, graphics processing units (GPUs) have been widely adopted for general-purpose computing, and are known as GPGPUs. However, current and future GPGPUs confront power and energy as the dominant constraints. The number of transistors integrated on a single GPU chip continues to increase due to shrinking feature size and the demand for massively parallel computing cores to increase throughput. On the other hand, the continuous decrease of transistor supply voltage at each new technology node has largely stalled because of leakage constraints, leading to an ever-increasing power density. Therefore, future GPGPUs must become more inherently energy efficient to avoid hitting the power wall. To meet the increasing demands on performance and energy-efficiency, emerging technologies such as non-volatile memory, inter-bank tunneling field effect transistors (TFETs), silicon nanophotonics, and three-dimensional (3D) integration are being deployed in hardware design and promise realization of power efficiency at a scale never expected before. The investigators are exploring a synergetic program to holistically and hierarchically improve the GPGPU's energy efficiency through emerging technology integration. The project objectives include (1) non-volatile memory in the GPU computing cores and low-power mechanisms to substantially reduce leakage and dynamic power consumption; (2) a hybrid TFET-CMOS (complementary metal-oxide semiconductor) methodology to effectively address the energy challenge at both intra- and inter-core levels; (3) a novel 3D-stacked throughput architecture based on silicon-nanophotonics technology to improve memory access performance yet reduce power consumption; (4) integration of the key research innovations and cross-technology optimizations to fully explore the potential of GPGPU design enabled by these emerging technologies. The proposed research will facilitate GPGPUs staying on track with deep sub-micron scaling and meeting the increasing demand for high-performance computing, and will hence benefit numerous real-life applications. This project will also contribute to society through engaging high-school and undergraduate students from minority-serving institutions in research, attracting women and other under-represented groups into graduate education, expanding the computer engineering curriculum with GPGPU power modeling and optimization techniques, disseminating research infrastructure for education and training, and collaborating with the GPU R&D industry.
如今,图形处理单元(GPU)已广泛用于通用计算,被称为GPGPU。然而,当前和未来的 GPGPU 面临着功率和能源的主要限制。由于特征尺寸的缩小以及对大规模并行计算核心提高吞吐量的需求,单个 GPU 芯片上集成的晶体管数量持续增加。另一方面,由于漏电限制,每个新技术节点晶体管电源电压的持续降低已基本停止,导致功率密度不断增加。因此,未来的 GPGPU 必须变得更加节能,以避免撞上电源墙。为了满足对性能和能效日益增长的需求,非易失性存储器、组间隧道场效应晶体管 (TFET)、硅纳米光子学和三维 (3D) 集成等新兴技术正在硬件设计和应用中得到部署。承诺以前所未有的规模实现能源效率。研究人员正在探索一项协同计划,通过新兴技术集成来全面、分层地提高 GPGPU 的能源效率。该项目的目标包括(1)GPU计算核心中的非易失性存储器和低功耗机制,以大幅减少泄漏和动态功耗; (2) 混合 TFET-CMOS(互补金属氧化物半导体)方法,可有效解决内核内和内核间的能源挑战; (3) 基于硅纳米光子技术的新型 3D 堆叠吞吐量架构,可提高内存访问性能并降低功耗; (4)整合关键研究创新和跨技术优化,充分挖掘这些新兴技术所赋能的GPGPU设计潜力。拟议的研究将有助于 GPGPU 保持在深亚微米尺度的轨道上,并满足对高性能计算日益增长的需求,从而使众多实际应用受益。该项目还将通过吸引少数民族服务机构的高中生和本科生参与研究、吸引女性和其他弱势群体进入研究生教育、利用 GPGPU 功率建模和优化技术扩展计算机工程课程、传播研究成果等方式为社会做出贡献。教育和培训基础设施,以及与GPU研发行业的合作。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Renato Figueiredo其他文献

A Pipeline for Deep Learning with Specimen Images in iDigBio - Applying and Generalizing an Examination of Mercury Use in Preparing Herbarium Specimens
iDigBio 中标本图像深度学习的流程 - 应用和推广汞在制备植物标本室标本中的使用检查
Proceedings of the 3rd international workshop on Virtualization technologies in distributed computing
第三届分布式计算虚拟化技术国际研讨会论文集
  • DOI:
  • 发表时间:
    2009-06-15
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K. Keahey;Renato Figueiredo
  • 通讯作者:
    Renato Figueiredo
Send: a social network friendship enhanced decentralized system to circumvent censorships
发送:社交网络友谊增强的去中心化系统,可规避审查
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    8.1
  • 作者:
    Ding Ding;Kyuho Jeong;Shuning Xing;Mauro Conti;Renato Figueiredo;Fangai Liu
  • 通讯作者:
    Fangai Liu
IPOP Overlay Networks for Data Sharing and Virtual Clusters in PRAGMA
用于 PRAGMA 中数据共享和虚拟集群的 IPOP 覆盖网络
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Renato Figueiredo; Ken Subratie; Kyuho Jeong; Saumitra Aditya; Kohei Ichikawa
  • 通讯作者:
    Kohei Ichikawa
Model development, testing and experimentation in a CyberWorkstation for Brain-Machine Interface research.
在网络工作站中进行脑机接口研究的模型开发、测试和实验。

Renato Figueiredo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Renato Figueiredo', 18)}}的其他基金

Collaborative Research: Elements: FaaSr: Enabling Cloud-native Event-driven Function-as-a-Service Computing Workflows in R
协作研究:要素:FaaSr:在 R 中启用云原生事件驱动的函数即服务计算工作流程
  • 批准号:
    2311123
  • 财政年份:
    2023
  • 资助金额:
    $ 24.37万
  • 项目类别:
    Standard Grant
Collaborative Research: URoL:ASC: Applying rules of life to forecast emergent behavior of phytoplankton and advance water quality management
合作研究:URoL:ASC:应用生命规则预测浮游植物的紧急行为并推进水质管理
  • 批准号:
    2318862
  • 财政年份:
    2023
  • 资助金额:
    $ 24.37万
  • 项目类别:
    Standard Grant
I-Corps: Software-Defined Overlay Virtual Private Network for Edge Computing
I-Corps:用于边缘计算的软件定义的覆盖虚拟专用网络
  • 批准号:
    2134548
  • 财政年份:
    2021
  • 资助金额:
    $ 24.37万
  • 项目类别:
    Standard Grant
Collaborative Research: CIBR: Cyberinfrastructure Enabling End-to-End Workflows for Aquatic Ecosystem Forecasting
合作研究:CIBR:网络基础设施支持水生生态系统预测的端到端工作流程
  • 批准号:
    1933102
  • 财政年份:
    2020
  • 资助金额:
    $ 24.37万
  • 项目类别:
    Standard Grant
Collaborative Research: Elements: EdgeVPN: Seamless Secure Virtual Networking for Edge and Fog Computing
协作研究:要素:EdgeVPN:用于边缘和雾计算的无缝安全虚拟网络
  • 批准号:
    2004441
  • 财政年份:
    2020
  • 资助金额:
    $ 24.37万
  • 项目类别:
    Standard Grant
SaTC: CORE: Small: GOALI: Predicting and Labeling Email Phishing from Social Influence Cues and User Characteristics.
SaTC:核心:小:GOALI:根据社会影响线索和用户特征预测和标记电子邮件网络钓鱼。
  • 批准号:
    2028734
  • 财政年份:
    2020
  • 资助金额:
    $ 24.37万
  • 项目类别:
    Standard Grant
SaTC: CORE: Medium: Collaborative: REVELARE: A Hardware-Supported Dynamic Information Flow Tracking Framework for IoT Security and Forensics
SaTC:核心:媒介:协作:REVELARE:用于物联网安全和取证的硬件支持的动态信息流跟踪框架
  • 批准号:
    1801599
  • 财政年份:
    2018
  • 资助金额:
    $ 24.37万
  • 项目类别:
    Standard Grant
SaTC: CORE: Small: FIRMA: Personalized Cross-Layer Continuous Authentication
SaTC:核心:小型:FIRMA:个性化跨层连续身份验证
  • 批准号:
    1814557
  • 财政年份:
    2018
  • 资助金额:
    $ 24.37万
  • 项目类别:
    Standard Grant
NeTS: Small: PerSoNet: Overlay Virtual Private Networks Spanning Personal Clouds and Social Peers
NetS:小型:PerSoNet:跨越个人云和社交对等的覆盖虚拟专用网络
  • 批准号:
    1527415
  • 财政年份:
    2015
  • 资助金额:
    $ 24.37万
  • 项目类别:
    Standard Grant
Student Travel Support for ACM HPDC 2013
ACM HPDC 2013 学生旅行支持
  • 批准号:
    1333443
  • 财政年份:
    2013
  • 资助金额:
    $ 24.37万
  • 项目类别:
    Standard Grant

相似国自然基金

ALKBH5介导的SOCS3-m6A去甲基化修饰在颅脑损伤后小胶质细胞炎性激活中的调控作用及机制研究
  • 批准号:
    82301557
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
miRNA前体小肽miPEP在葡萄低温胁迫抗性中的功能研究
  • 批准号:
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
PKM2苏木化修饰调节非小细胞肺癌起始细胞介导的耐药生态位的机制研究
  • 批准号:
    82372852
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于翻译组学理论探究LncRNA H19编码多肽PELRM促进小胶质细胞活化介导电针巨刺改善膝关节术后疼痛的机制研究
  • 批准号:
    82305399
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
CLDN6高表达肿瘤细胞亚群在非小细胞肺癌ICB治疗抗性形成中的作用及机制研究
  • 批准号:
    82373364
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
  • 批准号:
    2331301
  • 财政年份:
    2024
  • 资助金额:
    $ 24.37万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    $ 24.37万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
  • 批准号:
    2331302
  • 财政年份:
    2024
  • 资助金额:
    $ 24.37万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Quasi Weightless Neural Networks for Energy-Efficient Machine Learning on the Edge
合作研究:SHF:小型:用于边缘节能机器学习的准失重神经网络
  • 批准号:
    2326895
  • 财政年份:
    2023
  • 资助金额:
    $ 24.37万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Technical Debt Management in Dynamic and Distributed Systems
合作研究:SHF:小型:动态和分布式系统中的技术债务管理
  • 批准号:
    2232720
  • 财政年份:
    2023
  • 资助金额:
    $ 24.37万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了